2015 Vol. 34, No. 11
Display Method:
2015, 34(11): .
Abstract:
2015, 34(11): .
Abstract:
2015, 34(11): .
Abstract:
2015, 34(11): 1-5.
doi: 10.1007/s13131-015-0756-y
Abstract:
South China Sea, its circulation and connection with other parts of the world oceans, poses important scientific questions. From the prospective view, we postulate ten key research directions to be pursued in the coming future, including ventilation of a monsoon dominated sea, water mass formation/transformation, heat/salt and water mass balance, energetics and mixing, mesoscale eddies, the role of typhoon, deep circulation and paleoclimate records, interaction with adjacent oceans, upwelling and ecology system, and response to climate changes.
South China Sea, its circulation and connection with other parts of the world oceans, poses important scientific questions. From the prospective view, we postulate ten key research directions to be pursued in the coming future, including ventilation of a monsoon dominated sea, water mass formation/transformation, heat/salt and water mass balance, energetics and mixing, mesoscale eddies, the role of typhoon, deep circulation and paleoclimate records, interaction with adjacent oceans, upwelling and ecology system, and response to climate changes.
2015, 34(11): 6-13.
doi: 10.1007/s13131-015-0743-3
Abstract:
A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10-2 m2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10-6 m2/s), the eddy diffusivity increased with depth, and its largest value was O(10-3 m2/s).
A turbulent microstructure experiment was undertaken at a low latitude of 10°N in the South China Sea in late August 2012. The characteristics of the eddy diffusivity above 650 m were analyzed, which is one order of magnitude larger than that in the open ocean at that low latitude. Enhanced eddy diffusivities by strong shears and sharp changes in topography were observed. The strongest eddy diffusivity occurred in the mixed layer, and it reached O(10-2 m2/s). Strong stratification in the thermocline inhibited the penetration of surface eddy diffusivities through the thermocline, where the mixing was weakest. Below the thermocline, where the background eddy diffusivity was approximately O(10-6 m2/s), the eddy diffusivity increased with depth, and its largest value was O(10-3 m2/s).
2015, 34(11): 14-21.
doi: 10.1007/s13131-015-0744-2
Abstract:
Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in the strait and concentrate to a closed trajectory, the so-called internal wave attractor, due to the reflection of wave beams from the lateral boundaries, sea surface and bottom. This work carried out two experiments using a three dimensional non-hydrostatic general circulation model, MITgcm, to investigate the possibility that the ridges in the Luzon Strait allows for internal wave attractors. Baroclinic current in both of the experiments demonstrate the forming of ring-like patterns in some section around 20° and 21°N, indicating that the development of the internal wave attractors are allowed in the Luzon Strait. The different resolutions and initial conditions in the two experiments also reveal that the internal-wave-attractor phenomenon is robust in this region.
Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in the strait and concentrate to a closed trajectory, the so-called internal wave attractor, due to the reflection of wave beams from the lateral boundaries, sea surface and bottom. This work carried out two experiments using a three dimensional non-hydrostatic general circulation model, MITgcm, to investigate the possibility that the ridges in the Luzon Strait allows for internal wave attractors. Baroclinic current in both of the experiments demonstrate the forming of ring-like patterns in some section around 20° and 21°N, indicating that the development of the internal wave attractors are allowed in the Luzon Strait. The different resolutions and initial conditions in the two experiments also reveal that the internal-wave-attractor phenomenon is robust in this region.
2015, 34(11): 22-31.
doi: 10.1007/s13131-015-0701-0
Abstract:
This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level oscillations (SLOs) on the shelf induced by winter storms. The first event occurred from January 9 to 21. The SLO periods were double-peaked at 1.6-5.3 and 7.0-16.0 d with the power densities of 0.04-0.05 and 0.10-0.15 m2·d, respectively. The second event occurred from February 5 to 18. The SLO period was single-peaked at 2.3-3.5 d with power density of 0.03-0.04 m2·d. The third event occurred from February 20 to March 8. The SLO periods were double-peaked at 1.5-4.3 and 6.1-8.2 d with the power densities of 0.08-0.11 and 0.02-0.08 m2·d, respectively. The SLOs propagated along the coast from Zhejiang in north to Guangdong in south. The phase speeds ranged about 9-29 m/s from Kanmen to Pingtan, 5-11 m/s from Xiamen to Huizhou and 11-22 m/s from Huizhou to Shuidong. The dispersion relation of the SLOs shows their nature of coastal-trapped wave.
This study applies the wavelet analysis to the tidal gauge records, alongshore winds, atmospheric temperature and pressure along the China coast in winter 2008. The analysis results show three events of sea level oscillations (SLOs) on the shelf induced by winter storms. The first event occurred from January 9 to 21. The SLO periods were double-peaked at 1.6-5.3 and 7.0-16.0 d with the power densities of 0.04-0.05 and 0.10-0.15 m2·d, respectively. The second event occurred from February 5 to 18. The SLO period was single-peaked at 2.3-3.5 d with power density of 0.03-0.04 m2·d. The third event occurred from February 20 to March 8. The SLO periods were double-peaked at 1.5-4.3 and 6.1-8.2 d with the power densities of 0.08-0.11 and 0.02-0.08 m2·d, respectively. The SLOs propagated along the coast from Zhejiang in north to Guangdong in south. The phase speeds ranged about 9-29 m/s from Kanmen to Pingtan, 5-11 m/s from Xiamen to Huizhou and 11-22 m/s from Huizhou to Shuidong. The dispersion relation of the SLOs shows their nature of coastal-trapped wave.
2015, 34(11): 32-37.
doi: 10.1007/s13131-015-0745-1
Abstract:
A nonhydrostatic numerical model was developed and numerical experiments performed on the interaction of an internal solitary wave (ISW) with a sill, for a two-layer fluid with a diffusive interface. Based on the blocking parameter (Br), the flow was classified into three cases: (1) when bottom topography has little influence on the propagation and spatial structure of the ISW (Br<0.5), (2) where the ISW is distorted significantly by the blocking effect of the topography (though no wave breaking occurs, (0.5< Br <0.7), and (3) where the ISW is broken as it encounters and passes over the bottom topography (0.7<Br). The numerical results obtained here are consistent with those obtained in laboratory experiments. The breaking process of the incident ISW when Br≈0.7 was completely reproduced. Dissipation rate was linearly related to the blocking parameter when Br<0.7, and the maximum dissipation rate could reach about 34% as Br raised to about 1.0. After that, instead of breaking, more reflection happened. Similarly, breaking induced mixing was also most effective during Br around 1.0, and can be up to 0.16.
A nonhydrostatic numerical model was developed and numerical experiments performed on the interaction of an internal solitary wave (ISW) with a sill, for a two-layer fluid with a diffusive interface. Based on the blocking parameter (Br), the flow was classified into three cases: (1) when bottom topography has little influence on the propagation and spatial structure of the ISW (Br<0.5), (2) where the ISW is distorted significantly by the blocking effect of the topography (though no wave breaking occurs, (0.5< Br <0.7), and (3) where the ISW is broken as it encounters and passes over the bottom topography (0.7<Br). The numerical results obtained here are consistent with those obtained in laboratory experiments. The breaking process of the incident ISW when Br≈0.7 was completely reproduced. Dissipation rate was linearly related to the blocking parameter when Br<0.7, and the maximum dissipation rate could reach about 34% as Br raised to about 1.0. After that, instead of breaking, more reflection happened. Similarly, breaking induced mixing was also most effective during Br around 1.0, and can be up to 0.16.
2015, 34(11): 38-45.
doi: 10.1007/s13131-015-0746-0
Abstract:
With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.
With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.
2015, 34(11): 46-54.
doi: 10.1007/s13131-015-0747-z
Abstract:
The spatial-temporal characteristics of internal tides (ITs) in the southwest Luzon Strait are examined, based on 9-month mooring current records from autumn 2008 to summer 2009. The results of spectral analysis show that the ITs in diurnal and semidiurnal frequencies are prominent at the mooring site, especially for the clockwise rotary component. The diurnal ITs are mostly dominated by the first mode except for that in spring when the second mode is relatively predominant. The semidiurnal ITs display a variable multimodal structure. Moreover, an apparent difference is detected in the kinetic energy of diurnal ITs. The energy is strongest in winter, and followed by that in summer, whereas the value is smallest in spring and autumn. It is suggested that the incoherent motions are responsible for the significant seasonal variations of diurnal ITs, reflecting interaction between diurnal ITs and the varying background conditions. However, the semidiurnal ITs are independent of seasonal change, whose energy is smaller and only one-third of the diurnal energy in winter. Nevertheless, the abnormal variations of semidiurnal ITs are also related to the variable background conditions. The incoherent semidiurnal constituent accounts for about 37% of the total semidiurnal tidal kinetic energy, but the diurnal tidal motions contain fewer incoherent component (22.2%).
The spatial-temporal characteristics of internal tides (ITs) in the southwest Luzon Strait are examined, based on 9-month mooring current records from autumn 2008 to summer 2009. The results of spectral analysis show that the ITs in diurnal and semidiurnal frequencies are prominent at the mooring site, especially for the clockwise rotary component. The diurnal ITs are mostly dominated by the first mode except for that in spring when the second mode is relatively predominant. The semidiurnal ITs display a variable multimodal structure. Moreover, an apparent difference is detected in the kinetic energy of diurnal ITs. The energy is strongest in winter, and followed by that in summer, whereas the value is smallest in spring and autumn. It is suggested that the incoherent motions are responsible for the significant seasonal variations of diurnal ITs, reflecting interaction between diurnal ITs and the varying background conditions. However, the semidiurnal ITs are independent of seasonal change, whose energy is smaller and only one-third of the diurnal energy in winter. Nevertheless, the abnormal variations of semidiurnal ITs are also related to the variable background conditions. The incoherent semidiurnal constituent accounts for about 37% of the total semidiurnal tidal kinetic energy, but the diurnal tidal motions contain fewer incoherent component (22.2%).
2015, 34(11): 55-62.
doi: 10.1007/s13131-015-0748-y
Abstract:
A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation, propagation, vertical structure and energy conversion of M2 internal tides in the Luzon Strait (LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations, demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.
A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation, propagation, vertical structure and energy conversion of M2 internal tides in the Luzon Strait (LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations, demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.
2015, 34(11): 63-70.
doi: 10.1007/s13131-015-0749-x
Abstract:
Based on the global position system (GPS) radiosonde data near the sea surface, the surface duct characteristics over the South China Sea (SCS) were statistically analyzed. The annual surface duct occurrence over the SCS was about 64%. Of the observed surface ducts, duct heights mainly distributed between 18 and 42 m, with M slopes in the range of -0.3 to -0.2 M units/m. Those ducts accounted for about 80% of the ducting cases. For the total profiles, the duct occurrences in a day changed slowly and were more than 60% in all times. The surface ducts formed more easily in the daytime than in the nighttime and most of the duct height were at bellow about 32 m. Additionally, The seasonal variation of the SCS ducts appeared to be evident, except that the mean duct thickness was almost constant, about 33 m for all seasons. The highest occurrence was about 71% in the autumn, followed by in the summer, spring and winter. In spring, their top-height existed more often at a height of more than 48 m. Their mean duct strength became stronger trend from spring to winter, with the M-slope in the range between -0.26 and -0.18 M units/m. Those results agreed well with other studies, provided considering the data resolution. The statistical analysis was reliable and gave the duct estimation for the SCS. Such duct climatology not only has important implications for communication systems and the reliability of the radar observation, but also can provide useful information to improve the accuracy of the meteorological radar measurements.
Based on the global position system (GPS) radiosonde data near the sea surface, the surface duct characteristics over the South China Sea (SCS) were statistically analyzed. The annual surface duct occurrence over the SCS was about 64%. Of the observed surface ducts, duct heights mainly distributed between 18 and 42 m, with M slopes in the range of -0.3 to -0.2 M units/m. Those ducts accounted for about 80% of the ducting cases. For the total profiles, the duct occurrences in a day changed slowly and were more than 60% in all times. The surface ducts formed more easily in the daytime than in the nighttime and most of the duct height were at bellow about 32 m. Additionally, The seasonal variation of the SCS ducts appeared to be evident, except that the mean duct thickness was almost constant, about 33 m for all seasons. The highest occurrence was about 71% in the autumn, followed by in the summer, spring and winter. In spring, their top-height existed more often at a height of more than 48 m. Their mean duct strength became stronger trend from spring to winter, with the M-slope in the range between -0.26 and -0.18 M units/m. Those results agreed well with other studies, provided considering the data resolution. The statistical analysis was reliable and gave the duct estimation for the SCS. Such duct climatology not only has important implications for communication systems and the reliability of the radar observation, but also can provide useful information to improve the accuracy of the meteorological radar measurements.
2015, 34(11): 71-79.
doi: 10.1007/s13131-015-0750-4
Abstract:
The Canada Basin (CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above isolated deep waters. With the temperature-salinity-pressure observations in 2003, 500-m-thick transition layers and lower 1 000-m-thick bottom homogenous layers were found below 2 400 m in the central deep CB. Staircases with downward-increasing temperature and salinity are prominent in the transition layers, suggesting the double-diffusive convection in deep CB. The interface of the stairs is about 10 m thick with 0.001-0.002℃ temperature difference, while the thicknesses of the homogenous layers in the steps decrease upward from about 60 to 20 m. The density ratio in the deep central CB is generally smaller than 2, indicating stronger double-diffusive convection than that in the upper ocean of 200-400 m. The heat flux through the deepest staircases in the deep CB varies between 0.014 and 0.031 W/m2, which is one-two orders smaller than the upper double-diffusive heat flux, but comparable to the estimates of geothermal heat flux.
The Canada Basin (CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above isolated deep waters. With the temperature-salinity-pressure observations in 2003, 500-m-thick transition layers and lower 1 000-m-thick bottom homogenous layers were found below 2 400 m in the central deep CB. Staircases with downward-increasing temperature and salinity are prominent in the transition layers, suggesting the double-diffusive convection in deep CB. The interface of the stairs is about 10 m thick with 0.001-0.002℃ temperature difference, while the thicknesses of the homogenous layers in the steps decrease upward from about 60 to 20 m. The density ratio in the deep central CB is generally smaller than 2, indicating stronger double-diffusive convection than that in the upper ocean of 200-400 m. The heat flux through the deepest staircases in the deep CB varies between 0.014 and 0.031 W/m2, which is one-two orders smaller than the upper double-diffusive heat flux, but comparable to the estimates of geothermal heat flux.
2015, 34(11): 80-91.
doi: 10.1007/s13131-015-0751-3
Abstract:
Zonal overturning circulation (ZOC) and its associated zonal heat flux (ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions. Heaving induced by inter-annual and decadal wind stress perturbations can give rise to anomalous ZOC and ZHF. Based on a simple reduced gravity model, the anomalous ZOC and ZHF induced by idealized heaving modes in the world oceans are studied. For example, in a Pacific-like model basin intensified equatorial easterly on decadal time scales can lead to a negative ZOC with a non-negligible magnitude (-0.3×106 m3/s) and a considerable westward ZHF with an amplitude of -11.2 TW. Thus, anomalous ZOC and ZHF may consist of a major part of climate signals on decadal time scales and thus play an important role in the oceanic circulation and climate change.
Zonal overturning circulation (ZOC) and its associated zonal heat flux (ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions. Heaving induced by inter-annual and decadal wind stress perturbations can give rise to anomalous ZOC and ZHF. Based on a simple reduced gravity model, the anomalous ZOC and ZHF induced by idealized heaving modes in the world oceans are studied. For example, in a Pacific-like model basin intensified equatorial easterly on decadal time scales can lead to a negative ZOC with a non-negligible magnitude (-0.3×106 m3/s) and a considerable westward ZHF with an amplitude of -11.2 TW. Thus, anomalous ZOC and ZHF may consist of a major part of climate signals on decadal time scales and thus play an important role in the oceanic circulation and climate change.
2015, 34(11): 92-101.
doi: 10.1007/s13131-015-0752-2
Abstract:
The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water (AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is probably touched by an Argo float during the float's ascent-descent cycles and is identified by the horizontal salinity gradient between the vertical temperature-salinity profiles. This shows that the transportation of the AAIW may be accompanied with the rich mesoscale characteristics. To derive the spatial length, time, and propagation characteristics of the mesoscale variability of the AAIW, the gridded temperature-salinity dataset ENACT/ENSEMBLE Version 3 constructed on the in-situ observations in the South Pacific since 2005 is used. The Empirical Mode Decomposition method is applied to decompose the isopycnal-averaged salinity anomaly from 26.8 σθ-27.4 σθ, where the AAIW mainly resides, into the basin scale and two mesoscale modes. It is found that the first mesoscale mode with the length scale on the order of 1 000 km explains nearly 50% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speeds are slower in the mid-latitude (around 1 cm/s) and faster in the low latitude (around 6 cm/s), but with an increasing in the latitude band on 25°-30°S. The second mesoscale mode is of the length scale on the order of 500 km, explaining about 30% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speed keeps nearly unchanged (around 0.5 cm/s). These results presented the stronger turbulent motion of the subsurface ocean on the spatial scale, and also described the significant role of Argo program for the better understanding of the deep ocean.
The Argo float observations are used to investigate the mesoscale characteristics of the Antarctic Intermediate Water (AAIW) in the South Pacific in this paper. It is shown that a subsurface mesoscale phenomenon is probably touched by an Argo float during the float's ascent-descent cycles and is identified by the horizontal salinity gradient between the vertical temperature-salinity profiles. This shows that the transportation of the AAIW may be accompanied with the rich mesoscale characteristics. To derive the spatial length, time, and propagation characteristics of the mesoscale variability of the AAIW, the gridded temperature-salinity dataset ENACT/ENSEMBLE Version 3 constructed on the in-situ observations in the South Pacific since 2005 is used. The Empirical Mode Decomposition method is applied to decompose the isopycnal-averaged salinity anomaly from 26.8 σθ-27.4 σθ, where the AAIW mainly resides, into the basin scale and two mesoscale modes. It is found that the first mesoscale mode with the length scale on the order of 1 000 km explains nearly 50% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speeds are slower in the mid-latitude (around 1 cm/s) and faster in the low latitude (around 6 cm/s), but with an increasing in the latitude band on 25°-30°S. The second mesoscale mode is of the length scale on the order of 500 km, explaining about 30% variability of the mesoscale characteristics of the AAIW. Its westward-propagation speed keeps nearly unchanged (around 0.5 cm/s). These results presented the stronger turbulent motion of the subsurface ocean on the spatial scale, and also described the significant role of Argo program for the better understanding of the deep ocean.
2015, 34(11): 102-108.
doi: 10.1007/s13131-015-0753-1
Abstract:
Interannual variability of thermal front west of Luzon Island during the winter of 1993-2013 is examined with the method of singular value decomposition (SVD) and a suite of satellite measurements in this paper. It is found that both the area and intensity of the thermal front west of Luzon Island show apparent interannual variability. Further study based on SVD shows that the interannual variability of the thermal front is highly associated with El Niño and Southern Oscillation (ENSO), and the correlation coefficient between Niño3.4 index and the first Principal Component (PC1) of thermal front can reach -0.65. The mechanism can be described as follows. In El Niño (La Ni.a) years, the East Asian winter monsoon (EAWM) is weakened (enhanced), inducing weaker (stronger) local wind stress curl (WSC) west of Luzon Island, and resulting in weakened (enhanced) Luzon cold eddy, which finally leads to the weakening (enhancement) of the thermal front.
Interannual variability of thermal front west of Luzon Island during the winter of 1993-2013 is examined with the method of singular value decomposition (SVD) and a suite of satellite measurements in this paper. It is found that both the area and intensity of the thermal front west of Luzon Island show apparent interannual variability. Further study based on SVD shows that the interannual variability of the thermal front is highly associated with El Niño and Southern Oscillation (ENSO), and the correlation coefficient between Niño3.4 index and the first Principal Component (PC1) of thermal front can reach -0.65. The mechanism can be described as follows. In El Niño (La Ni.a) years, the East Asian winter monsoon (EAWM) is weakened (enhanced), inducing weaker (stronger) local wind stress curl (WSC) west of Luzon Island, and resulting in weakened (enhanced) Luzon cold eddy, which finally leads to the weakening (enhancement) of the thermal front.
2015, 34(11): 109-117.
doi: 10.1007/s13131-015-0754-0
Abstract:
From the analyses of the satellite altimeter Maps of Sea Level Anomaly (MSLA) data, tidal gauge sea level data and historical sea level data, this paper investigates the long-term sea level variability in the East China Sea (ECS). Based on the correlation analysis, we calculate the correlation coefficient between tidal gauge and the closest MSLA grid point, then generate the map of correlation coefficient of the entire ECS. The results show that the satellite altimeter MSLA data is effective to observe coastal sea level variability. An important finding is that from map of correlation coefficient we can identify the Kuroshio. The existence of Kuroshio decreases the correlation between coastal and the Pacific sea level. Kurishio likes a barrier or a wall, which blocks the effect of the Pacific and the global change. Moreover, coastal sea level in the ECS is mainly associated with local systems rather than global change. In order to calculate the long-term sea level variability trend, the empirical mode decomposition (EMD) method is applied to derive the trend on each MSLA grid point in the entire ECS. According to the 2-D distribution of the trend and rising rate, the sea level on the right side of the axis of Kuroshio rise faster than in its left side. This result supports the barrier effect of Kuroshio in the ECS. For the entire ECS, the average sea level rose 45.0 mm between 1993 and 2010, with a rising rate of (2.5±0.4) mm/a which is slower than global average. The relatively slower sea level rising rate further proves that sea level rise in the ECS has less response to global change due to its own local system effect.
From the analyses of the satellite altimeter Maps of Sea Level Anomaly (MSLA) data, tidal gauge sea level data and historical sea level data, this paper investigates the long-term sea level variability in the East China Sea (ECS). Based on the correlation analysis, we calculate the correlation coefficient between tidal gauge and the closest MSLA grid point, then generate the map of correlation coefficient of the entire ECS. The results show that the satellite altimeter MSLA data is effective to observe coastal sea level variability. An important finding is that from map of correlation coefficient we can identify the Kuroshio. The existence of Kuroshio decreases the correlation between coastal and the Pacific sea level. Kurishio likes a barrier or a wall, which blocks the effect of the Pacific and the global change. Moreover, coastal sea level in the ECS is mainly associated with local systems rather than global change. In order to calculate the long-term sea level variability trend, the empirical mode decomposition (EMD) method is applied to derive the trend on each MSLA grid point in the entire ECS. According to the 2-D distribution of the trend and rising rate, the sea level on the right side of the axis of Kuroshio rise faster than in its left side. This result supports the barrier effect of Kuroshio in the ECS. For the entire ECS, the average sea level rose 45.0 mm between 1993 and 2010, with a rising rate of (2.5±0.4) mm/a which is slower than global average. The relatively slower sea level rising rate further proves that sea level rise in the ECS has less response to global change due to its own local system effect.
2015, 34(11): 118-125.
doi: 10.1007/s13131-015-0755-z
Abstract:
Based on hydrographic data obtained at an ice camp deployed in the Makarov Basin by the 4th Chinese Arctic Research Expedition in August of 2010, temporal variability of vertical heat flux in the upper ocean of the Makarov Basin is investigated together with its impacts on sea ice melt and evolution of heat content in the remnant of winter mixed layer (rWML). The upper ocean of the Makarov Basin under sea ice is vertically stratified. Oceanic heat flux from mixed layer (ML) to ice evolves in three stages as a response to air temperature changes, fluctuating from 12.4 W/m2 to the maximum 43.6 W/m2. The heat transferred upward from ML can support (0.7±0.3) cm/d ice melt rate on average, and daily variability of melt rate agrees well with the observed results. Downward heat flux from ML across the base of ML is much less, only 0.87 W/m2, due to enhanced stratification in the seasonal halocline under ML caused by sea ice melt, indicating that increasing solar heat entering summer ML is mainly used to melt sea ice, with a small proportion transferred downward and stored in the rWML. Heat flux from ML into rWML changes in two phases caused by abrupt air cooling with a day lag. Meanwhile, upward heat flux from Atlantic water (AW) across the base of rWML, even though obstructed by the cold halocline layer (CHL), reaches 0.18 W/m2 on average with no obvious changing pattern and is also trapped by the rWML. Upward heat flux from deep AW is higher than generally supposed value near 0, as the existence of rWML enlarges the temperature gradient between surface water and CHL. Acting as a reservoir of heat transferred from both ML and AW, the increasing heat content of rWML can delay the onset of sea ice freezing.
Based on hydrographic data obtained at an ice camp deployed in the Makarov Basin by the 4th Chinese Arctic Research Expedition in August of 2010, temporal variability of vertical heat flux in the upper ocean of the Makarov Basin is investigated together with its impacts on sea ice melt and evolution of heat content in the remnant of winter mixed layer (rWML). The upper ocean of the Makarov Basin under sea ice is vertically stratified. Oceanic heat flux from mixed layer (ML) to ice evolves in three stages as a response to air temperature changes, fluctuating from 12.4 W/m2 to the maximum 43.6 W/m2. The heat transferred upward from ML can support (0.7±0.3) cm/d ice melt rate on average, and daily variability of melt rate agrees well with the observed results. Downward heat flux from ML across the base of ML is much less, only 0.87 W/m2, due to enhanced stratification in the seasonal halocline under ML caused by sea ice melt, indicating that increasing solar heat entering summer ML is mainly used to melt sea ice, with a small proportion transferred downward and stored in the rWML. Heat flux from ML into rWML changes in two phases caused by abrupt air cooling with a day lag. Meanwhile, upward heat flux from Atlantic water (AW) across the base of rWML, even though obstructed by the cold halocline layer (CHL), reaches 0.18 W/m2 on average with no obvious changing pattern and is also trapped by the rWML. Upward heat flux from deep AW is higher than generally supposed value near 0, as the existence of rWML enlarges the temperature gradient between surface water and CHL. Acting as a reservoir of heat transferred from both ML and AW, the increasing heat content of rWML can delay the onset of sea ice freezing.
2015, 34(11): 126-135.
doi: 10.1007/s13131-015-0659-y
Abstract:
Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microwave sea ice concentration product can be obtained using the ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice) retrieval algorithm. Instead of using fixed-point values, we developed ASI algorithm based on daily changed tie points, called as the dynamic tie point ASI algorithm in this study. Here the tie points are expressed as the brightness temperature polarization difference of open water and 100% sea ice. In 2010, the yearly-averaged tie points of open water and sea ice in Arctic are estimated to be 50.8 K and 7.8 K, respectively. It is confirmed that the sea ice concentrations retrieved by the dynamic tie point ASI algorithm can increase (decrease) the sea ice concentrations in low-value (high-value) areas. This improved the sea ice concentrations by present retrieval algorithm from microwave data to some extent. Comparing with the products using fixed tie points, the sea ice concentrations retrieved from AMSR-E data by using the dynamic tie point ASI algorithm are closer to those obtained from MODIS (Moderate-resolution Imaging Spectroradiometer) data. In 40 selected cloud-free sample regions, 95% of our results have smaller mean differences and 75% of our results have lower root mean square (RMS) differences compare with those by the fixed tie points.
Sea ice concentration is an important parameter for polar sea ice monitoring. Based on 89 GHz AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) data, a gridded high-resolution passive microwave sea ice concentration product can be obtained using the ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice) retrieval algorithm. Instead of using fixed-point values, we developed ASI algorithm based on daily changed tie points, called as the dynamic tie point ASI algorithm in this study. Here the tie points are expressed as the brightness temperature polarization difference of open water and 100% sea ice. In 2010, the yearly-averaged tie points of open water and sea ice in Arctic are estimated to be 50.8 K and 7.8 K, respectively. It is confirmed that the sea ice concentrations retrieved by the dynamic tie point ASI algorithm can increase (decrease) the sea ice concentrations in low-value (high-value) areas. This improved the sea ice concentrations by present retrieval algorithm from microwave data to some extent. Comparing with the products using fixed tie points, the sea ice concentrations retrieved from AMSR-E data by using the dynamic tie point ASI algorithm are closer to those obtained from MODIS (Moderate-resolution Imaging Spectroradiometer) data. In 40 selected cloud-free sample regions, 95% of our results have smaller mean differences and 75% of our results have lower root mean square (RMS) differences compare with those by the fixed tie points.