Citation: | Mingxu Wang, Chunhui Tao, Chao Lei, Hanchuang Wang, Ming Chen. Control of the stress field on shallow seafloor hydrothermal paths: A case study of the TAG hydrothermal field[J]. Acta Oceanologica Sinica, 2022, 41(9): 117-126. doi: 10.1007/s13131-022-2003-7 |
[1] |
Adelinet M, Fortin J, Schubnel A, et al. 2013. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255: 15–25. doi: 10.1016/j.jvolgeores.2013.01.011
|
[2] |
Bohnenstiehl D R, Kleinrock M C. 2000. Fissuring near the TAG active hydrothermal mound, 26°N on the mid-Atlantic ridge. Journal of Volcanology and Geothermal Research, 98(1–4): 33–48. doi: 10.1016/S0377-0273(99)00192-4
|
[3] |
Carruthers D, Cartwright J, Jackson M P A, et al. 2013. Origin and timing of layer-bound radial faulting around North Sea salt stocks: new insights into the evolving stress state around rising diapirs. Marine and Petroleum Geology, 48: 130–148. doi: 10.1016/j.marpetgeo.2013.08.001
|
[4] |
Chen Qinzhu, Tao Chunhui, Liao Shili, et al. 2017. Analyzing the gravitational stress field to forecast hydrothermal field-a case study of TAG hydrothemal field. Haiyang Xuebao (in Chinese), 39(1): 46–51
|
[5] |
Chen Ming, Zhang Shicheng, Xu Yun, et al. 2020. A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells. Petroleum Exploration and Development, 47(1): 171–183. doi: 10.1016/S1876-3804(20)60016-7
|
[6] |
Clair J S, Moon S, Holbrook W S, et al. 2015. Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260): 534–538. doi: 10.1126/science.aab2210
|
[7] |
deMartin B J, Sohn R A, Canales J P, et al. 2007. Kinematics and geometry of active detachment faulting beneath the trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology, 35(8): 711–714. doi: 10.1130/G23718A.1
|
[8] |
Eshiet K I I, Welch M, Sheng Yong. 2018. Numerical modelling to predict fracturing rock (Thanet chalk) due to naturally occurring faults and fluid pressure. Journal of Structural Geology, 116: 12–33. doi: 10.1016/j.jsg.2018.07.021
|
[9] |
Falcon-Suarez I, Bayrakci G, Minshull T A, et al. 2017. Elastic and electrical properties and permeability of serpentinites from Atlantis massif, mid-Atlantic ridge. Geophysical Journal International, 211(2): 686–699. doi: 10.1093/gji/ggx341
|
[10] |
German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?. Chemical Geology, 420: 114–126
|
[11] |
Germanovich L N, Lowell R P, Astakhov D K. 2000. Stress-dependent permeability and the formation of seafloor event plumes. Journal of Geophysical Research: Solid Earth, 105(B4): 8341–8354. doi: 10.1029/1999JB900431
|
[12] |
Graber S, Petersen S, Yeo I, et al. 2020. Structural control, evolution, and accumulation rates of massive sulfides in the TAG hydrothermal field. Geochemistry, Geophysics, Geosystems, 21(9): e2020GC009185,
|
[13] |
Grant H L J, Hannington M D, Petersen S, et al. 2018. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71. doi: 10.1016/j.chemgeo.2018.08.019
|
[14] |
Grevemeyer I, Reston T J, Moeller S. 2013. Microseismicity of the Mid-Atlantic Ridge at 7°S-8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N-14°50′N. Geochemistry, Geophysics, Geosystems, 14(9): 3532–3554
|
[15] |
Griffith W A, Becker J, Cione K, et al. 2014. 3D topographic stress perturbations and implications for ground control in underground coal mines. International Journal of Rock Mechanics and Mining Sciences, 70: 59–68. doi: 10.1016/j.ijrmms.2014.03.013
|
[16] |
Guo Zhikui, Rüpke L H, Fuchs S, et al. 2020. Anhydrite-assisted hydrothermal metal transport to the ocean floor-insights from thermo-hydro-chemical modeling. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019035. doi: 10.1029/2019JB019035
|
[17] |
Haimson B C, Rummel F. 1982. Hydrofracturing stress measurements in the Iceland research drilling project drill hole at Reydarfjordur, Iceland. Journal of Geophysical Research: Solid Earth, 87(B8): 6631–6649. doi: 10.1029/JB087iB08p06631
|
[18] |
Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/G32468.1
|
[19] |
Heidbach O, Rajabi M, Cui Xiaofeng, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484–498. doi: 10.1016/j.tecto.2018.07.007
|
[20] |
Hergert T, Heidbach O. 2011. Geomechanical model of the Marmara Sea region-II. 3-D contemporary background stress field. Geophysical Journal International, 185(3): 1090–1102. doi: 10.1111/j.1365-246X.2011.04992.x
|
[21] |
Hergert T, Heidbach O, Reiter K, et al. 2015. Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth, 6(2): 533–552. doi: 10.5194/se-6-533-2015
|
[22] |
Hu Panpan, Yang Fengli, Tian Lixin, et al. 2019. Stress field modelling of the Late Oligocene tectonic inversion in the Liaodong Bay Subbasin, Bohai Bay Basin (northern China): Implications for geodynamics and petroleum accumulation. Journal of Geodynamics, 126: 32–45. doi: 10.1016/j.jog.2019.01.003
|
[23] |
Humphris S E, Kleinrock M C. 1996. Detailed morphology of the TAG Active Hydrothermal Mound: Insights into its formation and growth. Geophysical Research Letters, 23(23): 3443–3446. doi: 10.1029/96GL03079
|
[24] |
Humphris S E, Tivey M K, Tivey M A. 2015. The trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault. Deep-Sea Research Part II: Topical Studies in Oceanography, 121: 8–16. doi: 10.1016/j.dsr2.2015.02.015
|
[25] |
Hyndman R D, Drury M J. 1976. The physical properties of oceanic basement rocks from deep drilling on the Mid-Atlantic Ridge. Journal of Geophysical Research, 81(23): 4042–4052. doi: 10.1029/JB081i023p04042
|
[26] |
Jamieson J W, Gartman A. 2020. Defining active, inactive, and extinct seafloor massive sulfide deposits. Marine Policy, 117: 103926. doi: 10.1016/j.marpol.2020.103926
|
[27] |
Kleinrock M C, Humphris S E. 1996. Structural control on sea-floor hydrothermal activity at the TAG active mound. Nature, 382(11): 149–153
|
[28] |
Koschinsky A, Heinrich L, Boehnke K, et al. 2018. Deep-sea mining: interdisciplinary research on potential environmental, legal, economic, and societal implications. Integrated Environmental Assessment and Management, 14(6): 672–691. doi: 10.1002/ieam.4071
|
[29] |
Marjanović M, Barreyre T, Fontaine F J, et al. 2019. Investigating fine-scale permeability structure and its control on hydrothermal activity along a fast-spreading ridge (the East Pacific Rise, 9°43′-53′N) using seismic velocity, Poroelastic response, and numerical modeling. Geophysical Research Letters, 46(21): 11799–11810. doi: 10.1029/2019GL084040
|
[30] |
McGregor B A, Harrison C G A, Lavelle J W, et al. 1977. Magnetic anomaly patterns on Mid-Atlantic Ridge crest at 26°N. Journal of Geophysical Research, 82(2): 231–238. doi: 10.1029/JB082i002p00231
|
[31] |
Moon S, Perron J T, Martel S J, et al. 2020. Present-day stress field influences bedrock fracture openness deep into the subsurface. Geophysical Research Letters, 47(23): e2020GL090581. doi: 10.1029/2020GL090581
|
[32] |
Murton B J, Lehrmann B, Dutrieux A M, et al. 2019. Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge). Ore Geology Reviews, 107: 903–925. doi: 10.1016/j.oregeorev.2019.03.005
|
[33] |
Olive J A, Crone T J. 2018. Smoke without fire: how long can thermal cracking sustain hydrothermal circulation in the absence of magmatic heat?. Journal of Geophysical Research: Solid Earth, 123(6): 4561–4581
|
[34] |
Petersen S. 2019. Bathymetric data products from AUV dives during METEOR cruise M127 (TAG Hydrothermal Field, Atlantic). PANGAEA, https://doi.org//10.1594/PANGAEA.899415[2021-01-10]
|
[35] |
Petersen S, Krätschell A, Augustin N, et al. 2016. News from the seabed-geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, 70: 175–187. doi: 10.1016/j.marpol.2016.03.012
|
[36] |
Pontbriand C W, Sohn R A. 2014. Microearthquake evidence for reaction-driven cracking within the Trans-Atlantic Geotraverse active hydrothermal deposit. Journal of Geophysical Research: Solid Earth, 119(2): 822–839. doi: 10.1002/2013JB010110
|
[37] |
Rajabi M, Heidbach O, Tingay M, et al. 2017. Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical-numerical models. Australian Journal of Earth Sciences, 64(4): 435–454. doi: 10.1080/08120099.2017.1294109
|
[38] |
Reiter K, Heidbach O. 2014. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth, 5(2): 1123–1149. doi: 10.5194/se-5-1123-2014
|
[39] |
Schöpa A, Pantaleo M, Walter T R. 2011. Scale-dependent location of hydrothermal vents: Stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research, 203(3–4): 133–145. doi: 10.1016/j.jvolgeores.2011.03.008
|
[40] |
Sleep N H. 1991. Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axes. Journal of Geophysical Research: Solid Earth, 96(B2): 2375–2387. doi: 10.1029/90JB02335
|
[41] |
Slim M, Perron J T, Martel S J, et al. 2015. Topographic stress and rock fracture: a two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations. Earth Surface Processes and Landforms, 40(4): 512–529. doi: 10.1002/esp.3646
|
[42] |
Sohn R A, Thomson R E, Rabinovich A B, et al. 2009. Bottom pressure signals at the TAG deep-sea hydrothermal field: evidence for short-period, flow-induced ground deformation. Geophysical Research Letters, 36(19): L19301. doi: 10.1029/2009GL040006
|
[43] |
Szitkar F, Dyment J, Petersen S, et al. 2019. Detachment tectonics at Mid-Atlantic Ridge 26°N. Scientific Reports, 9(1): 11830. doi: 10.1038/s41598-019-47974-z
|
[44] |
Tivey M K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50–65. doi: 10.5670/oceanog.2007.80
|
[45] |
Tivey M A, Schouten H, Kleinrock M C. 2003. A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26°N: implications for the tectonic evolution of the TAG segment. Journal of Geophysical Research: Solid Earth, 108(B5): 2277. doi: 10.1029/2002JB001967
|
[46] |
Wang Ke, Zhang Huiliang, Zhang Ronghu, et al. 2017. Analysis and numerical simulation of tectonic stress field in the Dabei gas field, Tarim basin. Acta Geologica Sinica, 91(11): 2557–2572
|
[47] |
White S N, Humphris S E, Kleinrock M C. 1998. New Observations on the distribution of past and present hydrothermal activity in the TAG area of the mid-Atlantic ridge (26°08′N). Marine Geophysical Researches, 20(1): 41–56. doi: 10.1023/A:1004376229719
|
[48] |
Wright D J. 1998. Formation and development of fissures at the East Pacific Rise: Implications for faulting and magmatism at mid-ocean ridges. In: Buck W R, Delaney P T, Karson J A, et al., eds. Faulting and Magmatism at Mid-Ocean Ridges. Washington: American Geophysical Union, 137–151
|
[49] |
Wright D J, Haymon R M, MacDonald K C. 1995. Breaking new ground: estimates of crack depth along the axial zone of the East Pacific Rise (9°12′−54′N). Earth and Planetary Science Letters, 134(3−4): 441–457. doi: 10.1016/0012-821X(95)00081-M
|
[50] |
Zhao Minghui, Canales J P, Sohn R A. 2012. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N−26°20′N). Geochemistry, Geophysics, Geosystems, 13(11): 2012GC004454,
|
[51] |
Zhu Aiyu, Zhang Dongning, Jiang Changsheng. 2015. Numerical simulation of the segmentation of the stress state of the Anninghe-Zemuhe-Xiaojiang faults. Science China Earth Sciences, 59(2): 384–395
|
[52] |
Ziegler M O, Heidbach O, Reinecker J, et al. 2016. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin. Solid Earth, 7(5): 1365–1382. doi: 10.5194/se-7-1365-2016
|