Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Mingxu Wang, Chunhui Tao, Chao Lei, Hanchuang Wang, Ming Chen. Control of the stress field on shallow seafloor hydrothermal paths: A case study of the TAG hydrothermal field[J]. Acta Oceanologica Sinica, 2022, 41(9): 117-126. doi: 10.1007/s13131-022-2003-7
Citation: Mingxu Wang, Chunhui Tao, Chao Lei, Hanchuang Wang, Ming Chen. Control of the stress field on shallow seafloor hydrothermal paths: A case study of the TAG hydrothermal field[J]. Acta Oceanologica Sinica, 2022, 41(9): 117-126. doi: 10.1007/s13131-022-2003-7

Control of the stress field on shallow seafloor hydrothermal paths: A case study of the TAG hydrothermal field

doi: 10.1007/s13131-022-2003-7
Funds:  The National Natural Science Foundation of China under contract No. 42127807; the Key R&D Program of Zhejiang Province under contract No. 2021C03016; the National Key R&D Program of China under contract No. 2017YFC0208401; the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract Nos SL2020MS033, SL2020ZD205 and SL2104; the Scientific Research Fund of Second Institute of Oceanography under contract Nos SL2020MS033, SL2020ZD205 and SL2104; the Talent Cultivation Project of Zhejiang Association for Science and Technology under contract No. SKX201901.
More Information
  • Corresponding author: E-mail: taochunhuimail@163.com
  • Received Date: 2021-02-01
  • Accepted Date: 2022-02-05
  • Available Online: 2022-06-07
  • Publish Date: 2022-08-31
  • The stress state and rock mechanical properties govern the growth of faults and fractures, which constitute shallow hydrothermal pathways and control the distribution of seafloor massive sulfide (SMS) mounds in the seafloor hydrothermal field. The stress field has an important influence on the formation and persistence of hydrothermal pathways. Based on multibeam bathymetric data from the Trans-Atlantic Geotraverse (TAG) field, we establish two three-dimensional geological models with different scales to simulate the stress field, which investigate the characteristics of hydrothermal pathways and associated SMS mounds. The simulation results show that oblique faults and fissures form in the tensile stress zone and that mounds, including active and inactive hydrothermal mounds form in the compressive stress zone. Fault activity, which is related to the stress field, affects the opening and closing of hydrothermal channels and changes the permeability structure of subseafloor wall rock. Therefore, the stress field controls the development and persistence of shallow hydrothermal pathways. The features of shallow hydrothermal pathways in the stress field can provide geomechanical information that is useful for identifying favorable zone for SMS deposit formation.
  • loading
  • [1]
    Adelinet M, Fortin J, Schubnel A, et al. 2013. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255: 15–25. doi: 10.1016/j.jvolgeores.2013.01.011
    [2]
    Bohnenstiehl D R, Kleinrock M C. 2000. Fissuring near the TAG active hydrothermal mound, 26°N on the mid-Atlantic ridge. Journal of Volcanology and Geothermal Research, 98(1–4): 33–48. doi: 10.1016/S0377-0273(99)00192-4
    [3]
    Carruthers D, Cartwright J, Jackson M P A, et al. 2013. Origin and timing of layer-bound radial faulting around North Sea salt stocks: new insights into the evolving stress state around rising diapirs. Marine and Petroleum Geology, 48: 130–148. doi: 10.1016/j.marpetgeo.2013.08.001
    [4]
    Chen Qinzhu, Tao Chunhui, Liao Shili, et al. 2017. Analyzing the gravitational stress field to forecast hydrothermal field-a case study of TAG hydrothemal field. Haiyang Xuebao (in Chinese), 39(1): 46–51
    [5]
    Chen Ming, Zhang Shicheng, Xu Yun, et al. 2020. A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells. Petroleum Exploration and Development, 47(1): 171–183. doi: 10.1016/S1876-3804(20)60016-7
    [6]
    Clair J S, Moon S, Holbrook W S, et al. 2015. Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260): 534–538. doi: 10.1126/science.aab2210
    [7]
    deMartin B J, Sohn R A, Canales J P, et al. 2007. Kinematics and geometry of active detachment faulting beneath the trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology, 35(8): 711–714. doi: 10.1130/G23718A.1
    [8]
    Eshiet K I I, Welch M, Sheng Yong. 2018. Numerical modelling to predict fracturing rock (Thanet chalk) due to naturally occurring faults and fluid pressure. Journal of Structural Geology, 116: 12–33. doi: 10.1016/j.jsg.2018.07.021
    [9]
    Falcon-Suarez I, Bayrakci G, Minshull T A, et al. 2017. Elastic and electrical properties and permeability of serpentinites from Atlantis massif, mid-Atlantic ridge. Geophysical Journal International, 211(2): 686–699. doi: 10.1093/gji/ggx341
    [10]
    German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?. Chemical Geology, 420: 114–126
    [11]
    Germanovich L N, Lowell R P, Astakhov D K. 2000. Stress-dependent permeability and the formation of seafloor event plumes. Journal of Geophysical Research: Solid Earth, 105(B4): 8341–8354. doi: 10.1029/1999JB900431
    [12]
    Graber S, Petersen S, Yeo I, et al. 2020. Structural control, evolution, and accumulation rates of massive sulfides in the TAG hydrothermal field. Geochemistry, Geophysics, Geosystems, 21(9): e2020GC009185,
    [13]
    Grant H L J, Hannington M D, Petersen S, et al. 2018. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498: 45–71. doi: 10.1016/j.chemgeo.2018.08.019
    [14]
    Grevemeyer I, Reston T J, Moeller S. 2013. Microseismicity of the Mid-Atlantic Ridge at 7°S-8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N-14°50′N. Geochemistry, Geophysics, Geosystems, 14(9): 3532–3554
    [15]
    Griffith W A, Becker J, Cione K, et al. 2014. 3D topographic stress perturbations and implications for ground control in underground coal mines. International Journal of Rock Mechanics and Mining Sciences, 70: 59–68. doi: 10.1016/j.ijrmms.2014.03.013
    [16]
    Guo Zhikui, Rüpke L H, Fuchs S, et al. 2020. Anhydrite-assisted hydrothermal metal transport to the ocean floor-insights from thermo-hydro-chemical modeling. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019035. doi: 10.1029/2019JB019035
    [17]
    Haimson B C, Rummel F. 1982. Hydrofracturing stress measurements in the Iceland research drilling project drill hole at Reydarfjordur, Iceland. Journal of Geophysical Research: Solid Earth, 87(B8): 6631–6649. doi: 10.1029/JB087iB08p06631
    [18]
    Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/G32468.1
    [19]
    Heidbach O, Rajabi M, Cui Xiaofeng, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484–498. doi: 10.1016/j.tecto.2018.07.007
    [20]
    Hergert T, Heidbach O. 2011. Geomechanical model of the Marmara Sea region-II. 3-D contemporary background stress field. Geophysical Journal International, 185(3): 1090–1102. doi: 10.1111/j.1365-246X.2011.04992.x
    [21]
    Hergert T, Heidbach O, Reiter K, et al. 2015. Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth, 6(2): 533–552. doi: 10.5194/se-6-533-2015
    [22]
    Hu Panpan, Yang Fengli, Tian Lixin, et al. 2019. Stress field modelling of the Late Oligocene tectonic inversion in the Liaodong Bay Subbasin, Bohai Bay Basin (northern China): Implications for geodynamics and petroleum accumulation. Journal of Geodynamics, 126: 32–45. doi: 10.1016/j.jog.2019.01.003
    [23]
    Humphris S E, Kleinrock M C. 1996. Detailed morphology of the TAG Active Hydrothermal Mound: Insights into its formation and growth. Geophysical Research Letters, 23(23): 3443–3446. doi: 10.1029/96GL03079
    [24]
    Humphris S E, Tivey M K, Tivey M A. 2015. The trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault. Deep-Sea Research Part II: Topical Studies in Oceanography, 121: 8–16. doi: 10.1016/j.dsr2.2015.02.015
    [25]
    Hyndman R D, Drury M J. 1976. The physical properties of oceanic basement rocks from deep drilling on the Mid-Atlantic Ridge. Journal of Geophysical Research, 81(23): 4042–4052. doi: 10.1029/JB081i023p04042
    [26]
    Jamieson J W, Gartman A. 2020. Defining active, inactive, and extinct seafloor massive sulfide deposits. Marine Policy, 117: 103926. doi: 10.1016/j.marpol.2020.103926
    [27]
    Kleinrock M C, Humphris S E. 1996. Structural control on sea-floor hydrothermal activity at the TAG active mound. Nature, 382(11): 149–153
    [28]
    Koschinsky A, Heinrich L, Boehnke K, et al. 2018. Deep-sea mining: interdisciplinary research on potential environmental, legal, economic, and societal implications. Integrated Environmental Assessment and Management, 14(6): 672–691. doi: 10.1002/ieam.4071
    [29]
    Marjanović M, Barreyre T, Fontaine F J, et al. 2019. Investigating fine-scale permeability structure and its control on hydrothermal activity along a fast-spreading ridge (the East Pacific Rise, 9°43′-53′N) using seismic velocity, Poroelastic response, and numerical modeling. Geophysical Research Letters, 46(21): 11799–11810. doi: 10.1029/2019GL084040
    [30]
    McGregor B A, Harrison C G A, Lavelle J W, et al. 1977. Magnetic anomaly patterns on Mid-Atlantic Ridge crest at 26°N. Journal of Geophysical Research, 82(2): 231–238. doi: 10.1029/JB082i002p00231
    [31]
    Moon S, Perron J T, Martel S J, et al. 2020. Present-day stress field influences bedrock fracture openness deep into the subsurface. Geophysical Research Letters, 47(23): e2020GL090581. doi: 10.1029/2020GL090581
    [32]
    Murton B J, Lehrmann B, Dutrieux A M, et al. 2019. Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge). Ore Geology Reviews, 107: 903–925. doi: 10.1016/j.oregeorev.2019.03.005
    [33]
    Olive J A, Crone T J. 2018. Smoke without fire: how long can thermal cracking sustain hydrothermal circulation in the absence of magmatic heat?. Journal of Geophysical Research: Solid Earth, 123(6): 4561–4581
    [34]
    Petersen S. 2019. Bathymetric data products from AUV dives during METEOR cruise M127 (TAG Hydrothermal Field, Atlantic). PANGAEA, https://doi.org//10.1594/PANGAEA.899415[2021-01-10]
    [35]
    Petersen S, Krätschell A, Augustin N, et al. 2016. News from the seabed-geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, 70: 175–187. doi: 10.1016/j.marpol.2016.03.012
    [36]
    Pontbriand C W, Sohn R A. 2014. Microearthquake evidence for reaction-driven cracking within the Trans-Atlantic Geotraverse active hydrothermal deposit. Journal of Geophysical Research: Solid Earth, 119(2): 822–839. doi: 10.1002/2013JB010110
    [37]
    Rajabi M, Heidbach O, Tingay M, et al. 2017. Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical-numerical models. Australian Journal of Earth Sciences, 64(4): 435–454. doi: 10.1080/08120099.2017.1294109
    [38]
    Reiter K, Heidbach O. 2014. 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth, 5(2): 1123–1149. doi: 10.5194/se-5-1123-2014
    [39]
    Schöpa A, Pantaleo M, Walter T R. 2011. Scale-dependent location of hydrothermal vents: Stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research, 203(3–4): 133–145. doi: 10.1016/j.jvolgeores.2011.03.008
    [40]
    Sleep N H. 1991. Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axes. Journal of Geophysical Research: Solid Earth, 96(B2): 2375–2387. doi: 10.1029/90JB02335
    [41]
    Slim M, Perron J T, Martel S J, et al. 2015. Topographic stress and rock fracture: a two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations. Earth Surface Processes and Landforms, 40(4): 512–529. doi: 10.1002/esp.3646
    [42]
    Sohn R A, Thomson R E, Rabinovich A B, et al. 2009. Bottom pressure signals at the TAG deep-sea hydrothermal field: evidence for short-period, flow-induced ground deformation. Geophysical Research Letters, 36(19): L19301. doi: 10.1029/2009GL040006
    [43]
    Szitkar F, Dyment J, Petersen S, et al. 2019. Detachment tectonics at Mid-Atlantic Ridge 26°N. Scientific Reports, 9(1): 11830. doi: 10.1038/s41598-019-47974-z
    [44]
    Tivey M K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50–65. doi: 10.5670/oceanog.2007.80
    [45]
    Tivey M A, Schouten H, Kleinrock M C. 2003. A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26°N: implications for the tectonic evolution of the TAG segment. Journal of Geophysical Research: Solid Earth, 108(B5): 2277. doi: 10.1029/2002JB001967
    [46]
    Wang Ke, Zhang Huiliang, Zhang Ronghu, et al. 2017. Analysis and numerical simulation of tectonic stress field in the Dabei gas field, Tarim basin. Acta Geologica Sinica, 91(11): 2557–2572
    [47]
    White S N, Humphris S E, Kleinrock M C. 1998. New Observations on the distribution of past and present hydrothermal activity in the TAG area of the mid-Atlantic ridge (26°08′N). Marine Geophysical Researches, 20(1): 41–56. doi: 10.1023/A:1004376229719
    [48]
    Wright D J. 1998. Formation and development of fissures at the East Pacific Rise: Implications for faulting and magmatism at mid-ocean ridges. In: Buck W R, Delaney P T, Karson J A, et al., eds. Faulting and Magmatism at Mid-Ocean Ridges. Washington: American Geophysical Union, 137–151
    [49]
    Wright D J, Haymon R M, MacDonald K C. 1995. Breaking new ground: estimates of crack depth along the axial zone of the East Pacific Rise (9°12′−54′N). Earth and Planetary Science Letters, 134(3−4): 441–457. doi: 10.1016/0012-821X(95)00081-M
    [50]
    Zhao Minghui, Canales J P, Sohn R A. 2012. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N−26°20′N). Geochemistry, Geophysics, Geosystems, 13(11): 2012GC004454,
    [51]
    Zhu Aiyu, Zhang Dongning, Jiang Changsheng. 2015. Numerical simulation of the segmentation of the stress state of the Anninghe-Zemuhe-Xiaojiang faults. Science China Earth Sciences, 59(2): 384–395
    [52]
    Ziegler M O, Heidbach O, Reinecker J, et al. 2016. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin. Solid Earth, 7(5): 1365–1382. doi: 10.5194/se-7-1365-2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (868) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return