Citation: | Wenjin Sun, Jingsong Yang, Wei Tan, Yu Liu, Baojun Zhao, Yijun He, Changming Dong. Eddy diffusivity and coherent mesoscale eddy analysis in the Southern Ocean[J]. Acta Oceanologica Sinica, 2021, 40(10): 1-16. doi: 10.1007/s13131-021-1881-4 |
[1] |
Abernathey R, Ferreira D, Klocker A. 2013. Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modelling, 72: 1–16. doi: 10.1016/j.ocemod.2013.07.004
|
[2] |
Abernathey R, Marshall J, Mazloff M, et al. 2010. Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. Journal of Physical Oceanography, 40(1): 170–184. doi: 10.1175/2009JPO4201.1
|
[3] |
Adams K A, Hosegood P, Taylor J R, et al. 2017. Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy. Journal of Physical Oceanography, 47(7): 1737–1753. doi: 10.1175/JPO-D-16-0266.1
|
[4] |
Aguiar A C B, Peliz Á, Carton X. 2013. A census of Meddies in a long-term high-resolution simulation. Progress in Oceanography, 116: 80–94. doi: 10.1016/j.pocean.2013.06.016
|
[5] |
Bachman S, Fox-Kemper B. 2013. Eddy parameterization challenge suite I: Eady spindown. Ocean Modelling, 64: 12–28. doi: 10.1016/j.ocemod.2012.12.003
|
[6] |
Bachman S D, Fox-Kemper B, Bryan F O. 2015. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Modelling, 86: 1–14. doi: 10.1016/j.ocemod.2014.11.006
|
[7] |
Bachman D, Fox-Kemper B, Bryan F O. 2020. A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. Journal of Advances in Modeling Earth Systems, 12(2): e2019MS001904
|
[8] |
Bachman S D, Marshall D P, Maddison J R, et al. 2017. Evaluation of a scalar eddy transport coefficient based on geometric constraints. Ocean Modelling, 109: 44–54. doi: 10.1016/j.ocemod.2016.12.004
|
[9] |
Bryan K, Dukowicz J K, Smith R D. 1999. On the mixing coefficient in the parameterization of bolus velocity. Journal of Physical Oceanography, 29(9): 2442–2456. doi: 10.1175/1520-0485(1999)029<2442:OTMCIT>2.0.CO;2
|
[10] |
Byrne D, Münnich M, Frenger I, Gruber N. 2016. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nature Communications, 7: s11867. doi: 10.1038/ncomms11867
|
[11] |
Canuto V M, Cheng Y, Howard A M, et al. 2019. Three-dimensional, space-dependent mesoscale diffusivity: derivation and implications. Journal of Physical Oceanography, 49(4): 1055–1074. doi: 10.1175/JPO-D-18-0123.1
|
[12] |
Chapman C, Sallée J B. 2017. Isopycnal mixing suppression by the Antarctic Circumpolar Current and the Southern Ocean meridional overturning circulation. Journal of Physical Oceanography, 47(8): 2023–2045. doi: 10.1175/JPO-D-16-0263.1
|
[13] |
Chelton D B, de Szoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography, 28(3): 433–460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
|
[14] |
Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
|
[15] |
Chen Ru, Flierl G R, Wunsch C. 2014. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate. Journal of Physical Oceanography, 44(9): 2336–2352. doi: 10.1175/JPO-D-14-0009.1
|
[16] |
Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans, 117: C05021
|
[17] |
Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116: C06018
|
[18] |
Chiswell S M. 2013. Lagrangian time scales and eddy diffusivity at 1000 m compared to the surface in the South Pacific and Indian oceans. Journal of Physical Oceanography, 43(12): 2718–2732. doi: 10.1175/JPO-D-13-044.1
|
[19] |
Couvelard X, Caldeira R M A, Araújo I B, et al. 2012. Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study. Dynamics of Atmospheres and Oceans, 58: 128–149. doi: 10.1016/j.dynatmoce.2012.09.005
|
[20] |
Dawson H R S, Strutton P G, Gaube P. 2018. The unusual surface chlorophyll signatures of Southern Ocean eddies. Journal of Geophysical Research: Oceans, 123(9): 6053–6069. doi: 10.1029/2017JC013628
|
[21] |
Dong Changming, Lin Xiayan, Liu Yu, et al. 2012. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. Journal of Geophysical Research: Oceans, 117(C7): C00H14
|
[22] |
Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294. doi: 10.1038/ncomms4294
|
[23] |
Eden C. 2006. Thickness diffusivity in the Southern Ocean. Geophysical Research Letters, 33(11): L11606
|
[24] |
Eden C, Greatbatch R J. 2008. Towards a mesoscale eddy closure. Ocean Modelling, 20(3): 223–239. doi: 10.1016/j.ocemod.2007.09.002
|
[25] |
Eden C, Greatbatch R J, Willebrand J. 2007. A diagnosis of thickness fluxes in an eddy-resolving model. Journal of Physical Oceanography, 37(3): 727–742. doi: 10.1175/JPO2987.1
|
[26] |
Ellwood M J, Strzepek R F, Strutton P G, et al. 2020. Distinct iron cycling in a Southern Ocean eddy. Nature Communications, 11: 825. doi: 10.1038/s41467-020-14464-0
|
[27] |
Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41: 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
|
[28] |
Fox-Kemper B, Adcroft A, Böning CW, et al. 2019. Challenges and prospects in ocean circulation models. Frontiers in Marine Science, 6: 65. doi: 10.3389/fmars.2019.00065
|
[29] |
Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6: 608–612. doi: 10.1038/ngeo1863
|
[30] |
Frenger I, Münnich M, Gruber N. 2018. Imprint of Southern Ocean mesoscale eddies on chlorophyll. Biogeosciences, 15: 4781–4798. doi: 10.5194/bg-15-4781-2018
|
[31] |
Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449. doi: 10.1002/2015JC011047
|
[32] |
Gent P R. 2011. The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modelling, 39(1–2): 2–9
|
[33] |
Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1): 150–155. doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
|
[34] |
Gordon A L, Molinelli E, Baker T. 1978. Large-scale relative dynamic topography of the Southern Ocean. Journal of Geophysical Research: Oceans, 83(C6): 3023–3032. doi: 10.1029/JC083iC06p03023
|
[35] |
Griesel A, Eden C, Koopmann N, et al. 2015. Comparing isopycnal eddy diffusivities in the Southern Ocean with predictions from linear theory. Ocean Modelling, 94: 33–45. doi: 10.1016/j.ocemod.2015.08.001
|
[36] |
Griesel A, McClean J L, Gille S T, et al. 2014. Eulerian and Lagrangian isopycnal eddy diffusivities in the Southern Ocean of an eddying model. Journal of Physical Oceanography, 44(2): 644–661. doi: 10.1175/JPO-D-13-039.1
|
[37] |
Grooms I, Kleiber W. 2019. Diagnosing, modeling, and testing a multiplicative stochastic gent-mcwilliams parameterization. Ocean Modelling, 133: 1–10. doi: 10.1016/j.ocemod.2018.10.009
|
[38] |
Haigh M, Sun Luolin, Shevchenko I, et al. 2020. Tracer-based estimates of eddy-induced diffusivities. Deep-Sea Research Part I: Oceanographic Research Papers, 160: 103264. doi: 10.1016/j.dsr.2020.103264
|
[39] |
Haller G, Hadjighasem A, Farazmand M, et al. 2016. Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795: 136–173. doi: 10.1017/jfm.2016.151
|
[40] |
Hausmann U, McGillicuddy D J Jr, Marshall J. 2017. Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth. Journal of Geophysical Research: Oceans, 122(1): 617–635. doi: 10.1002/2016JC012225
|
[41] |
He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2018. A new assessment of mesoscale eddies in the South China Sea: surface features, three-dimensional structures, and thermohaline transports. Journal of Geophysical Research: Oceans, 123(7): 4906–4929. doi: 10.1029/2018JC014054
|
[42] |
Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research: Oceans, 116: C05016
|
[43] |
Jackett D R, McDougall T J. 1997. A neutral density variable for the world’s oceans. Journal of Physical Oceanography, 27(2): 237–263. doi: 10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2
|
[44] |
Ji Jinlin, Dong Changming, Zhang Biao, et al. 2017. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension Region. Acta Oceanologica Sinica, 36(3): 1–7. doi: 10.1007/s13131-016-0882-1
|
[45] |
Klocker A, Abernathey R. 2014. Global patterns of mesoscale eddy properties and diffusivities. Journal of Physical Oceanography, 44(3): 1030–1046. doi: 10.1175/JPO-D-13-0159.1
|
[46] |
Klocker A, Marshall D P. 2014. Advection of baroclinic eddies by depth mean flow. Geophysical Research Letters, 41(10): 3517–3521. doi: 10.1002/2014GL060001
|
[47] |
LaCasce J H, Ferrari R, Marshall J, et al. 2014. Float-derived isopycnal diffusivities in the DIMES experiment. Journal of Physical Oceanography, 44(2): 764–780. doi: 10.1175/JPO-D-13-0175.1
|
[48] |
Li Qiuyang, Sun Liang, Xu Chi. 2018. The lateral eddy viscosity derived from the decay of oceanic mesoscale eddies. Open Journal of Marine Science, 8: 152–172. doi: 10.4236/ojms.2018.81008
|
[49] |
Lin Xiayan, Dong Changming, Chen Dake, et al. 2015. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Research Part I: Oceanographic Research Papers, 99: 46–64. doi: 10.1016/j.dsr.2015.01.007
|
[50] |
Liu Yu, Dong Changming, Liu Xiaohui, et al. 2017. Antisymmetry of oceanic eddies across the Kuroshio over a shelfbreak. Scientific Reports, 7(1): 6761. doi: 10.1038/s41598-017-07059-1
|
[51] |
Lu Jianhua, Speer K. 2010. Topography, jets, and eddy mixing in the Southern Ocean. Journal of Marine Research, 68(3–4): 479–502
|
[52] |
Lu Jianhua, Wang Fuchang, Liu Hailong, et al. 2016. Stationary mesoscale eddies, upgradient eddy fluxes, and the anisotropy of eddy diffusivity. Geophysical Research Letters, 43(2): 743–751. doi: 10.1002/2015GL067384
|
[53] |
Mak J, Maddison J R, Marshall D P. 2016. A new gauge-invariant method for diagnosing eddy diffusivities. Ocean Modelling, 104: 252–268. doi: 10.1016/j.ocemod.2016.06.006
|
[54] |
Marshall D P, Maddison J R, Berlo P S. 2012. A framework for parameterizing eddy potential vorticity fluxes. Journal of Physical Oceanography, 42(4): 539–557. doi: 10.1175/JPO-D-11-048.1
|
[55] |
Marshall J, Shuckburgh E, Jones H, et al. 2006. Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. Journal of Physical Oceanography, 36(9): 1806–1821. doi: 10.1175/JPO2949.1
|
[56] |
Marshall J, Shutts G. 1981. A note on rotational and divergent eddy fluxes. Journal of Physical Oceanography, 11(12): 1677–1680. doi: 10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2
|
[57] |
Mazloff M R, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean State Estimate. Journal of Physical Oceanography, 40(5): 880–899. doi: 10.1175/2009JPO4236.1
|
[58] |
McDougall T J. 1987. Neutral surface. Journal of Physical Oceanography, 17(11): 1950–1964. doi: 10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2
|
[59] |
McDougall T J, McIntosh P C. 1996. The temporal-residual-mean velocity. Part I: Derivation and the scalar conservation equations. Journal of Physical Oceanography, 26(12): 2653–2665. doi: 10.1175/1520-0485(1996)026<2653:TTRMVP>2.0.CO;2
|
[60] |
McDougall T J, McIntosh P C. 2001. The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. Journal of Physical Oceanography, 31(5): 1222–1246. doi: 10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2
|
[61] |
Medvedev A S, Greatbatch R J. 2004. On advection and diffusion in the mesosphere and lower thermosphere: The role of rotational fluxes. Journal of Geophysical Research: Atmospheres, 109: D07104
|
[62] |
Moreau S, Penna A D, Llort J, et al. 2017. Eddy-induced carbon transport across the Antarctic Circumpolar Current. Global Biogeochemical Cycles, 31(9): 1368–1386. doi: 10.1002/2017GB005669
|
[63] |
Nencioli F, Dong Changming, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
|
[64] |
Ni Qinbiao, Zhai Xiaoming, Wang Guihua, et al. 2020. Random movement of mesoscale eddies in the global ocean. Journal of Physical Oceanography, 50(8): 2341–2357. doi: 10.1175/JPO-D-19-0192.1
|
[65] |
Nummelin A, Busecke J J M, Haine T W N, et al. 2021. Diagnosing the scale- and space-dependent horizontal eddy diffusivity at the global surface ocean. Journal of Physical Oceanography, 51(2): 279–297. doi: 10.1175/JPO-D-19-0256.1
|
[66] |
Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Research and Oceanographic Abstracts, 17(3): 445–454. doi: 10.1016/0011-7471(70)90059-8
|
[67] |
Orsi A H, Nowlin W D Jr, Whitworth T III. 1993. On the circulation and stratification of the weddell gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 40(1): 169–203. doi: 10.1016/0967-0637(93)90060-G
|
[68] |
Patel R S, Llort J, Strutton P G, et al. 2020. The biogeochemical structure of Southern Ocean mesoscale eddies. Journal of Geophysical Research: Oceans, 125(8): e2020JC016115
|
[69] |
Poulsen M B, Jochum M, Nuterman R. 2018. Parameterized and resolved Southern Ocean eddy compensation. Ocean Modelling, 124: 1–15. doi: 10.1016/j.ocemod.2018.01.008
|
[70] |
Pujol M I, Faugère Y, Taburet G, et al. 2016. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12: 1067–1090. doi: 10.5194/os-12-1067-2016
|
[71] |
Rhines P B. 2001. Mesoscale eddies. In: Steele M, Turekian K K, Thorpe S A, eds. Encyclopedia of Ocean Science. San Diego, CA, USA: Academic Press, 1982–1992
|
[72] |
Rohr T, Harrison C, Long M C, et al. 2020. The simulated biological response to Southern Ocean eddies via biological rate modification and physical transport. Global Biogeochemical Cycles, 34(6): e2019GB006385
|
[73] |
Rypina I I, Kirincich A, Lentz S, et al. 2016. Investigating the eddy diffusivity concept in the coastal ocean. Journal of Physical Oceanography, 46(7): 2201–2218. doi: 10.1175/JPO-D-16-0020.1
|
[74] |
Sadarjoen I A, Post F H. 2000. Detection, quantification, and tracking of vortices using streamline geometry. Computers & Graphics, 24(3): 333–341
|
[75] |
Solovev M, Stone P H, Malanotte-Rizzoli P. 2002. Assessment of mesoscale eddy parameterizations for a single-basin coarse-resolution ocean model. Journal of Geophysical Research: Oceans, 107(C9): 9-1–9-19
|
[76] |
Song H, Long M C, Gaube P, et al. 2018. Seasonal variation in the correlation between anomalies of sea level and chlorophyll in the Antarctic Circumpolar Current. Geophysical Research Letters, 45(10): 5011–5019. doi: 10.1029/2017GL076246
|
[77] |
Stammer D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. Journal of Physical Oceanography, 27(8): 1743–1769. doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2
|
[78] |
Stanley Z, Bachman S D, Grooms I. 2020. Vertical structure of ocean mesoscale eddies with implications for parameterizations of tracer transport. Journal of Advances in Modeling Earth Systems, 12(10): e2020MS002151
|
[79] |
Sun Wenjin, Dong Changming, Tan Wei, et al. 2018. Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sensing, 10(5): 795. doi: 10.3390/rs10050795
|
[80] |
Sun Wenjin, Dong Changming, Tan Wei, et al. 2019. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sensing, 11(2): 208. doi: 10.3390/rs11020208
|
[81] |
Sun Wenjin, Dong Changming, Wang Ruyun, et al. 2017. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 122(2): 1476–1496. doi: 10.1002/2016JC012226
|
[82] |
Treguier A M, Held I M, Larichev V D. 1997. Parameterization of quasigeostrophic eddies in primitive equation ocean models. Journal of Physical Oceanography, 27(4): 567–580. doi: 10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2
|
[83] |
Visbeck M, Marshall J, Haine T, et al. 1997. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. Journal of Physical Oceanography, 27(3): 381–402. doi: 10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2
|
[84] |
Vollmer L, Eden C. 2013. A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Modelling, 72: 198–209. doi: 10.1016/j.ocemod.2013.09.006
|
[85] |
Waite A M, Stemmann L, Guidi L, et al. 2016. The wineglass effect shapes particle export to the deep ocean in mesoscale eddies. Geophysical Research Letters, 43(18): 9791–9800. doi: 10.1002/2015GL066463
|
[86] |
Wang Zifeng, Li Qiuyang, Sun Liang, et al. 2015. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Frontiers of Earth Science, 9: 202–208. doi: 10.1007/s11707-014-0478-z
|
[87] |
Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2–3): 273–294
|
[88] |
Wolfram P J, Ringler T D, Maltrud M E, et al. 2015. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via lagrangian, in situ, global, high-performance particle tracking (LIGHT). Journal of Physical Oceanography, 45(8): 2114–2133. doi: 10.1175/JPO-D-14-0260.1
|
[89] |
Yang Xiao, Xu Guangjun, Liu Yu, et al. 2020. Multi-source data analysis of mesoscale eddies and their effects on surface chlorophyll in the Bay of Bengal. Remote Sensing, 12(21): 3485. doi: 10.3390/rs12213485
|
[90] |
Ying Y K, Maddison J R, Vanneste J. 2019. Bayesian inference of ocean diffusivity from lagrangian trajectory data. Ocean Modelling, 140: 101401. doi: 10.1016/j.ocemod.2019.101401
|
[91] |
Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
|
[92] |
Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
|
[93] |
Zhang Zhengguang, Zhang Yu, Wang Wei, et al. 2013. Universal structure of mesoscale eddies in the ocean. Geophysical Research Letters, 40(14): 3677–3681. doi: 10.1002/grl.50736
|