Citation: | Yang Zhang, Changsheng Chen, Guoping Gao, Jianhua Qi, Huichan Lin, Wei Yu, Liang Chang. Wave-ice dynamical interaction: a numerical model and its application[J]. Acta Oceanologica Sinica, 2021, 40(11): 129-137. doi: 10.1007/s13131-021-1760-z |
[1] |
Asplin M G, Galley R, Barber D G, et al. 2012. Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. Journal of Geophysical Research: Oceans, 117(C6): C06025
|
[2] |
Bai Peng, Wang Jia, Chu P, et al. 2020. Modeling the ice-attenuated waves in the Great Lakes. Ocean Dynamics, 70(7): 991–1003. doi: 10.1007/s10236-020-01379-z
|
[3] |
Cavalieri D J, Parkinson C L, Vinnikov K Y. 2003. 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophysical Research Letters, 30(18): 1970
|
[4] |
Chen Changsheng, Beardsley R C, Cowles G. 2006. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography, 19(1): 78–89. doi: 10.5670/oceanog.2006.92
|
[5] |
Chen C, Beardsley R C, Cowles G, et al. 2013. An unstructured-grid, finite-volume community ocean model FVCOM user manual. SMAST-UMASSD Technical Report-13-0701, Dartmouth: University of Massachusetts-Dartmouth, 404
|
[6] |
Chen Changsheng, Liu Hedong, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1): 159–186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
|
[7] |
Dean C H. 1966. The attenuation of ocean waves near the open ocean/pack ice boundary. In: Proceedings of the Symposium on Antarctic Oceanography. Santiago, Chile: Scientific Committee on Antarctic Research, 13–16
|
[8] |
Doble M J, Bidlot J R. 2013. Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: progress towards global waves-in-ice modelling. Ocean Modelling, 70: 166–173. doi: 10.1016/j.ocemod.2013.05.012
|
[9] |
Dumont D, Kohout A, Bertino L. 2011. A wave-based model for the marginal ice zone including a floe breaking parameterization. Journal of Geophysical Research: Oceans, 116(C4): C04001
|
[10] |
Fujisaki-Manome A, Anderson E J, Kessler J A, et al. 2020. Simulating impacts of precipitation on ice cover and surface water temperature across large lakes. Journal of Geophysical Research: Oceans, 125(5): e2019JC015950. doi: 10.1029/2019JC015950
|
[11] |
Gao Guoping, Chen Changsheng, Qi Jianhua, et al. 2011. An unstructured-grid, finite-volume sea ice model: development, validation, and application. Journal of Geophysical Research: Oceans, 116(C8): C00D04
|
[12] |
Ivanov V, Alexeev V, Koldunov N V, et al. 2016. Arctic ocean heat impact on regional ice decay: a suggested positive feedback. Journal of Physical Oceanography, 46(5): 1437–1456. doi: 10.1175/JPO-D-15-0144.1
|
[13] |
Josberger E G, Martin S. 1981. A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. Journal of Fluid Mechanics, 111: 439–473. doi: 10.1017/S0022112081002450
|
[14] |
Kohout A L, Meylan M H. 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. Journal of Geophysical Research: Oceans, 113(C9): C09016. doi: 10.1029/2007JC004434
|
[15] |
Kohout A L, Williams M J M, Dean S M, et al. 2014. Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502): 604–607. doi: 10.1038/nature13262
|
[16] |
Kohout A L, Williams M J M, Toyota T, et al. 2015. In situ observations of wave-induced sea ice breakup. Deep-Sea Research Part II: Topical Studies in Oceanography, 131: 22–27. doi: 10.1016/j.dsr2.2015.06.010
|
[17] |
Kwok R, Cunningham G F, Wensnahan M, et al. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. Journal of Geophysical Research: Oceans, 114(C7): C07005. doi: 10.1029/2009JC005312
|
[18] |
Liu A K, Holt B, Vachon P W. 1991. Wave propagation in the marginal ice zone: model predictions and comparisons with buoy and synthetic aperture radar data. Journal of Geophysical Research: Oceans, 96(C3): 4605–4621. doi: 10.1029/90JC02267
|
[19] |
Maykut G A, Perovich D K. 1987. The role of shortwave radiation in the summer decay of a sea ice cover. Journal of Geophysical Research: Oceans, 92(C7): 7032–7044. doi: 10.1029/JC092iC07p07032
|
[20] |
Meier W, Stroeve J, Fetterer F, et al. 2005. Reductions in Arctic sea ice cover no longer limited to summer. Eos, Transactions American Geophysical Union, 86(36): 326
|
[21] |
Meylan M H, Bennetts L G, Cavaliere C, et al. 2015. Experimental and theoretical models of wave-induced flexure of a sea ice floe. Physics of Fluids, 27(4): 041704. doi: 10.1063/1.4916573
|
[22] |
Qi Jianhua, Chen Changsheng, Beardsley R C, et al. 2009. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Modelling, 28(1–3): 153–166. doi: 10.1016/j.ocemod.2009.01.007
|
[23] |
Robin G D Q. 1963. Wave propagation through fields of pack ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 255(1057): 313–339
|
[24] |
Schwarz J, Frederking R, Gavrillo V, et al. 1981. Standardized testing methods for measuring mechanical properties of ice. Cold Regions Science and Technology, 4(3): 245–253. doi: 10.1016/0165-232X(81)90007-0
|
[25] |
Squire V A. 2020. Ocean wave interactions with sea ice: a reappraisal. Annual Review of Fluid Mechanics, 52: 37–60. doi: 10.1146/annurev-fluid-010719-060301
|
[26] |
Squire V A, Meylan M. 1994. Changes to ocean wave spectra in a marginal ice zone 2. Osaka, Japan: The International Society of Offshore and Polar Engineers
|
[27] |
Squire V A. 2007. Of ocean waves and sea–ice revisited. Cold Regions Science and Technology, 49: 110–133. doi: 10.1016/j.coldregions.2007.04.007
|
[28] |
Squire V A, Vaughan G L, Bennetts L G. 2009. Ocean surface wave evolvement in the Arctic Basin. Geophysical Research Letters, 36(22): L22502. doi: 10.1029/2009GL040676
|
[29] |
Squire V A. 2020. Ocean wave interactions with sea ice: a reappraisal. Annual Review of Fluid Mechanics, 52(1): 37–60
|
[30] |
Steele M. 1992. Sea ice melting and floe geometry in a simple ice-ocean model. Journal of Geophysical Research: Oceans, 97(C11): 17729–17738. doi: 10.1029/92JC01755
|
[31] |
Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34(9): L09501
|
[32] |
Wadhams P, Squire V A, Goodman D J, et al. 1988. The attenuation rates of ocean waves in the marginal ice zone. Journal of Geophysical Research: Oceans, 93(C6): 6799–6818. doi: 10.1029/JC093iC06p06799
|
[33] |
Williams T D, Bennetts L G, Squire V A, et al. 2013a. Wave-ice interactions in the marginal ice zone. Part 1: theoretical foundations. Ocean Modelling, 71: 81–91. doi: 10.1016/j.ocemod.2013.05.010
|
[34] |
Williams T D, Bennetts L B, Squire V A, et al. 2013b. Wave-ice interactions in the marginal ice zone. Part 2: numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Modelling, 71: 92–101. doi: 10.1016/j.ocemod.2013.05.011
|
[35] |
Worby A P, Steer A, Lieser J L, et al. 2011. Regional-scale sea-ice and snow thickness distributions from in situ and satellite measurements over East Antarctica during SIPEX 2007. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9–10): 1125–1136
|
[36] |
Zhang Yang, Chen Changsheng, Beardsley R C, et al. 2020. Applications of an unstructured grid surface wave model (FVCOM-SWAVE) to the Arctic Ocean: the interaction between ocean waves and sea ice. Ocean Modelling, 145: 101532. doi: 10.1016/j.ocemod.2019.101532
|