SONG Lipu, WU Shuangxiu, SUN Jing, WANG Liang, LIU Tao, CHI Shan, LIU Cui, LI Xingang, YIN Jinlong, WANG Xumin, YU Jun. De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis[J]. Acta Oceanologica Sinica, 2014, 33(2): 45-53. doi: 10.1007/s13131-014-0440-7
Citation: SONG Lipu, WU Shuangxiu, SUN Jing, WANG Liang, LIU Tao, CHI Shan, LIU Cui, LI Xingang, YIN Jinlong, WANG Xumin, YU Jun. De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis[J]. Acta Oceanologica Sinica, 2014, 33(2): 45-53. doi: 10.1007/s13131-014-0440-7

De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis

doi: 10.1007/s13131-014-0440-7
  • Received Date: 2013-03-25
  • Rev Recd Date: 2013-07-22
  • Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gigartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which produce different types of carrageenans, beta (β)-carrageenan, kappa (κ)-carrageenan and iota (ι)-carrageenan. So far the carrageenan biosynthesis pathway is not fully understood and few information is about the Solieriaceae genome and transcriptome sequence. Here, we performed the de novo transcriptome sequencing, assembly, functional annotation and comparative analysis of these three commercial-valuable species using an Illumina short-sequencing platform Hiseq 2000 and bioinformatic software. Furthermore, we compared the different expression of some unigenes involved in some pathways relevant to carrageenan biosynthesis. We finally found 861 different expressed KEGG orthologs which contained a glycolysis/gluconeogenesis pathway (21 orthologs), carbon fixation in photosynthetic organisms (16 orthologs), galactose metabolism (5 orthologs), and fructose and mannose metabolism (9 orthologs) which are parts of the carbohydrate metabolism. We also found 8 different expressed KEGG orthologs for sulfur metabolism which might be importantly related to biosynthesis of different types of carrageenans. The results presented in this study provided valuable resources for functional genomics annotation and investigation of mechanisms underlying the biosynthesis of carrageenan in Family Solieriaceae.
  • loading
  • Altschul S F, Madden T L, Schaffer A A, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17): 389-402
    Ashburner M, Ball C A, Blake J A, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1): 25-29
    Barrero R A, Chapman B, Yang Y F, et al. 2011. De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes. BMC genomics, 12: 600
    Berrier A, Ulbricht R, Bonn M, et al. 2010. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. Optics Express, 18(22): 23226-23235
    Chiovitti A, Liao M L, Kraft G T, et al. 1995. Cell wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): Iota/kappa/beta-carrageenans from Melanema dumosum. Phycologia, 34(6): 522-527
    Cock J M, Sterck L, Rouze P, et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298): 617-621
    Cole K M, Sheath R G. 1990. Biology of the Red Algae. Cambridge, UK: Cambridge University Press
    Doty M S. 1988. Prodromus ad systematica Eucheumatoideorum: a tribe of commercial seaweeds related to Eucheuma (Solieriaceae, Gigartinales). In: Abbott I A, ed. Taxonomy of Economic Seaweeds, v II. La Jolla, CA: California Sea Grant Program, University of California, 159-207
    Garg R, Patel R K, Tyagi A K, et al. 2011. De novo assembly of Chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res, 18(1): 53-63
    Gordon-Mills E M, Johan Tas, McCandless E L. 1978. Carrageenans in the cell walls of Chondrus crispus Stack.(Rhodophyceae, Gigartinales). Phycologia, 17(1): 95-104
    Greer C W, Yaphe W. 1984. Characterization of hybrid (beta-kappa-gamma) carrageenan from Eucheuma gelatinae J. Agardh (Rhodophyta, Solieriaceae) using carrageenases, infrared and 13C-nuclear magnetic resonance spectroscopy. Bot Mar, 27(10): 473-478
    Imeson A P. 2000. Carrageenan. In: Phillips G O, Williams P A, eds. UK Handbook of Hydrocolloids. Cambridge, UK: Woodhead Publishing Limited, 87-102
    Johnson M T J, Carpenter E J, Tian Z J, et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One, 7(11): e50226
    Kanehisa M, Goto S, Kawashima S, et al. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res, 32(Database issue): D277-280
    Li Bo, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12: 323
    Li Tianyong, Ren Lei, Zhou Guan, et al. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese), 4: 64-71
    Li Ruiqiang, Zhu Hongmei, Ruan Jue, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20: 265-272
    Lobban C, Harrison P. 1994. Seaweed Ecology and Physiology. Cambridge: Cambridge University Press
    Luo Ruibang, Liu Binghang, Xie Yinlong, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1: 18
    McHugh D J. 2003. A Guide to the Seaweed Industry: FAO Fisheries Technical Paper No. 441. Rome: FAO
    Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35(Web Server issue): W182-185
    Mortazavi A, Williams B A, Mccue K, et al. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7): 621-628
    Nagalakshmi U, Wang Z, Waern K, et al. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881): 1344-1349
    Romualdi C, Bortoluzzi S, D'Alessi F, et al. 2003. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12(2): 159-162
    Rudolph B. 2000. Seaweed products: red algae of economic significance. In: Martin R E, Carter E P, Flick Jr G J, et al., eds. Marine and Freshwater Products Handbook. Lancaster, PA (USA): Technomic Publishing Co, 519-529
    Santos G A. 1989. Carrageenans of species of Eucheuma J. Agardh and Kappaphycus Doty (Solieriaceae, Rhodophyta). Aquat Bot, 36(1): 55-67
    Sayers E W, Barrett T, Benson D A, et al. 2012. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 40(Database issue): D13-25
    Tatusov R L, Fedorova N D, Jackson J D, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4: 41
    Trapnell C, Williams B A, Pertea G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5): 511-515
    Tseng C K, Lobban C S, Wynne M J. 1981. The Biology of Seaweeds. Oxford: Blackwell Sci Publ
    Usov A. 1998. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 12(3): 301-308
    van de Velde F, Knutsen S H, Usov A I, et al. 2002. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Tech, 13(3): 73-93
    Wang Xiaowei, Luan Junbo, Li Junming, et al. 2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11: 400
    Yuan Yuan, Song Lipu, Li Minhui, et al. 2012. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics, 13: 195
    Zdobnov E M, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17(9): 847-848
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1283) PDF downloads(1231) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return