Volume 43 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Temim Deli. Impacts of Early Pleistocene glacial vicariance among refugial lineages and Mid-Late Pleistocene interglacial dispersal and expansion on forging population genetic structure of the giant clam Tridacna squamosa (Bivalvia: Cardiidae: Tridacninae) across the Red Sea and Indo-West Pacific oceans[J]. Acta Oceanologica Sinica, 2024, 43(8): 111-127. doi: 10.1007/s13131-023-2265-8
Citation: Temim Deli. Impacts of Early Pleistocene glacial vicariance among refugial lineages and Mid-Late Pleistocene interglacial dispersal and expansion on forging population genetic structure of the giant clam Tridacna squamosa (Bivalvia: Cardiidae: Tridacninae) across the Red Sea and Indo-West Pacific oceans[J]. Acta Oceanologica Sinica, 2024, 43(8): 111-127. doi: 10.1007/s13131-023-2265-8

Impacts of Early Pleistocene glacial vicariance among refugial lineages and Mid-Late Pleistocene interglacial dispersal and expansion on forging population genetic structure of the giant clam Tridacna squamosa (Bivalvia: Cardiidae: Tridacninae) across the Red Sea and Indo-West Pacific oceans

doi: 10.1007/s13131-023-2265-8
More Information
  • Corresponding author: * Corresponding author, E-mail: temimdeli@yahoo.co.uk
  • Received Date: 2023-08-10
  • Accepted Date: 2023-09-04
  • Available Online: 2024-04-25
  • Publish Date: 2024-08-25
  • This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribution range. For this purpose, the evolutionary, biogeographic and demographic histories of the species were comprehensively reconstructed in a mitochondrial dataset comprising nearly the whole available published cytochrome c oxidase 1 gene sequences of T. squamosa. Relatively higher level of genetic diversification was unveiled within T. squamosa, in comparison to earlier macro-geographic investigations, whereby five mitochondrial clusters were delineated. The resulting divergent gene pools in the Red Sea, western Indian Ocean, Indo-Malay Archipelago and western Pacific were found to be driven by Early Pleistocene glacial vicariance events among refugial lineages. Accentuated genetic diversification of the species across the Indo-Malay Archipelago was successively triggered by historical dispersal event during the Mid-Pleistocene MIS19c interglacial. This latter historical event might have also enabled genetically distinct giant clams from the Indo-Malay Archipelago to subsequently colonize the western Pacific, accounting for the genetic diversity hotspot detected within this region (comprising three divergent mitochondrial clusters). Late Pleistocene demographic expansion of T. squamosa, during the Last Interglacial period, could have contributed to forging spatial distribution of the so far delineated genetic entities across the Indo-Western Pacific. Overall, being resilient to major climate shifts during the Pleistocene through adaptation and consequent diversification, T. squamosa could be used as a model species to track the impact of climate change on genetic variability and structure of marine species. In particular, the new information, provided in this investigation, may help with understanding and/or predicting the consequences of ongoing global warming on genetic polymorphism of endangered coral reef species among which Tridacna sp. are listed as ecologically important.
  • loading
  • Ackiss A S, Pardede S, Crandall E D, et al. 2013. Pronounced genetic structure in a highly mobile coral reef fish, Caesio cuning, in the Coral Triangle. Marine Ecology Progress Series, 480: 185–197, doi: 10.3354/meps10199
    Albaina N, Olsen J L, Couceiro L, et al. 2012. Recent history of the European Nassarius nitidus (Gastropoda): phylogeographic evidence of glacial refugia and colonization pathways. Marine Biology, 159(9): 1871–1884, doi: 10.1007/s00227-012-1975-9
    Andréfouët S, Van Wynsberge S, Fauvelot C, et al. 2014. Significance of new records of Tridacna squamosa Lamarck, 1819, in the Tuamotu and Gambier Archipelagos (French Polynesia). Molluscan Research, 34(4): 277–284, doi: 10.1080/13235818.2014.940662
    Avise J C. 1994. Molecular Markers, Natural History and Evolution. New York: Springer, 511
    Bailey G. 2009. The Red Sea, coastal landscapes, and hominin dispersals. In: Petraglia M D, Rose J I, eds. The Evolution of Human Populations in Arabia. Dordrecht: Springer, 15–37
    Barahona S, Oré-Chávez D, Bazán R Q. 2017. High genetic connectivity and population expansion of Scomber japonicus in the northern Humboldt current system revealed by mitochondrial control region sequences. Revista Peruana de Biología, 24(2): 163–174
    Barber P H, Erdmann M V, Palumbi S R. 2006. Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution, 60(9): 1825–1839
    Beaumont M A. 2010. Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41: 379–406
    Benzie J A H. 1999. Genetic structure of coral reef organisms: ghosts of dispersal past. American Zoologist, 39(1): 131–145, doi: 10.1093/icb/39.1.131
    Bernardi A P, Lauterjung M B, Mantovani A, et al. 2020. Phylogeography and species distribution modeling reveal a historic disjunction for the conifer Podocarpus lambertii. Tree Genetics & Genomes, 16(3): 40
    Borsa P, Durand J D, Chen Wei-Jen, et al. 2016. Comparative phylogeography of the western Indian Ocean reef fauna. Acta Oecologica, 72: 72–86, doi: 10.1016/j.actao.2015.10.009
    Bowen B W, Gaither M R, DiBattista J D, et al. 2016. Comparative phylogeography of the ocean planet. Proceedings of the National Academy of Sciences of the United States of America, 113(29): 7962–7969
    Briggs J C. 1999. Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution, 53(2): 326–335, doi: 10.2307/2640770
    Clark P U, Archer D, Pollard D, et al. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25(23-24): 3150–3184, doi: 10.1016/j.quascirev.2006.07.008
    Corander J, Cheng Lu, Marttinen P, et al. 2013. BAPS: Bayesian analysis of population structure manual v 6.0. Helsinki: University of Helsinki
    Corander J, Marttinen P. 2006. Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology, 15(10): 2833–2843, doi: 10.1111/j.1365-294X.2006.02994.x
    Corander J, Marttinen P, Sirén J, et al. 2008. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9: 539, doi: 10.1186/1471-2105-9-539
    Cornuet J M, Pudlo P, Veyssier J, et al. 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics, 30(8): 1187–1189, doi: 10.1093/bioinformatics/btt763
    Crandall E D, Frey M A, Grosberg R K, et al. 2008a. Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Molecular Ecology, 17(2): 611–626, doi: 10.1111/j.1365-294X.2007.03600.x
    Crandall E D, Jones M E, Muñoz M M, et al. 2008b. Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle. Molecular Ecology, 17(24): 5276–5290, doi: 10.1111/j.1365-294X.2008.03995.x
    Crandall E D, Sbrocco E J, DeBoer T S, et al. 2012. Expansion dating: calibrating molecular clocks in marine species from expansions onto the Sunda shelf following the last glacial maximum. Molecular Biology and Evolution, 29(2): 707–719, doi: 10.1093/molbev/msr227
    DeBoer T S, Naguit M R A, Erdmann M V, et al. 2014. Concordance between phylogeographic and biogeographic boundaries in the Coral Triangle: conservation implications based on comparative analyses of multiple giant clam species. Bulletin of Marine Science, 90(1): 277–300, doi: 10.5343/bms.2013.1003
    DeBoer T S, Subia M D, Erdmann M V, et al. 2008. Phylogeography and limited genetic connectivity in the endangered boring giant clam across the Coral Triangle. Conservation Biology, 22(5): 1255–1266, doi: 10.1111/j.1523-1739.2008.00983.x
    Deli T, Chatti N, Said K, et al. 2016. Concordant patterns of mtDNA and nuclear phylogeographic structure reveal Pleistocene vicariant event in the green crab Carcinus aestuarii across the Siculo-Tunisian Strait. Mediterranean Marine Science, 17(2): 533–551, doi: 10.12681/mms.1562
    Deli T, Kalkan E, Karhan S Ü, et al. 2018. Parapatric genetic divergence among deep evolutionary lineages in the Mediterranean green crab, Carcinus aestuarii (Brachyura, Portunoidea, Carcinidae), accounts for a sharp phylogeographic break in the Eastern Mediterranean. BMC Evolutionary Biology, 18(1): 53, doi: 10.1186/s12862-018-1167-4
    Deli T, Kiel C, Schubart C D. 2019. Phylogeographic and evolutionary history analyses of the warty crab Eriphia verrucosa (Decapoda, Brachyura, Eriphiidae) unveil genetic imprints of a late Pleistocene vicariant event across the Gibraltar Strait, erased by postglacial expansion and admixture among refugial lineages. BMC Evolutionary Biology, 19(1): 105, doi: 10.1186/s12862-019-1423-2
    DiBattista J D, Berumen M L, Gaither M R, et al. 2013. After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. Journal of Biogeography, 40(6): 1170–1181, doi: 10.1111/jbi.12068
    DiBattista J D, Choat J H, Gaither M R, et al. 2016. On the origin of endemic species in the Red Sea. Journal of Biogeography, 43(1): 13–30, doi: 10.1111/jbi.12631
    Dohna T A, Timm T, Hamid L, et al. 2015. Limited connectivity and a phylogeographic break characterize populations of the pink anemonefish, Amphiprion perideraion, in the Indo-Malay Archipelago: inferences from a mitochondrial and microsatellite loci. Ecology and Evolution, 5(8): 1717–1733, doi: 10.1002/ece3.1455
    Drummond A J, Rambaut A, Shapiro B, et al. 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5): 1185–1192, doi: 10.1093/molbev/msi103
    Drummond A J, Suchard M A, Xie Dong, et al. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8): 1969–1973, doi: 10.1093/molbev/mss075
    Evangelisti F, Bellucci A, Sabelli B, et al. 2017. The periwinkle Echinolittorina punctata (Mollusca: Gastropoda) tracked the warming of the Mediterranean Sea following the Last Glacial Maximum. Marine Biology, 164(2): 34, doi: 10.1007/s00227-017-3071-7
    Excoffier L, Laval G, Schneider S. 2007. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 47–50
    Farhadi A, Jeffs A G, Farahmand H, et al. 2017. Mechanisms of peripheral phylogeographic divergence in the Indo-Pacific: lessons from the spiny lobster Panulirus homarus. BMC Evolutionary Biology, 17(1): 195, doi: 10.1186/s12862-017-1050-8
    Fauvelot C, Zuccon D, Borsa P, et al. 2020. Phylogeographical patterns and a cryptic species provide new insights into Western Indian Ocean giant clams phylogenetic relationships and colonization history. Journal of Biogeography, 47(5): 1086–1105, doi: 10.1111/jbi.13797
    Fernández Iriarte P J, González-Wevar C A, Segovia N I, et al. 2020. Quaternary ice sheets and sea level regression drove divergence in a marine gastropod along eastern and western coasts of South America. Scientific Reports, 10(1): 844, doi: 10.1038/s41598-020-57543-4
    Ferretti P, Crowhurst S J, Naafs B D A, et al. 2015. The marine isotope stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability. Quaternary Science Reviews, 108: 95–110, doi: 10.1016/j.quascirev.2014.10.024
    Findra M N, Setyobudiandi I, Butet N A, et al. 2017. Genetic profile assessment of giant clam genus Tridacna as a basis for resource management at Wakatobi national park waters. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 22(2): 67–74, doi: 10.14710/ik.ijms.22.2.67-74
    Fleminger A. 1986. The Pleistocene equatorial barrier between the Indian and Pacific Oceans and a likely cause for Wallace’s line. In: Pierrot-Bults A C, Van Der Spoel S, Aahuraner B J, et al, eds. Pelagic Biogeography. Paris: UNESCO Technical Papers in Marine Science, 84–97
    Froukh T, Kochzius M. 2008. Species boundaries and evolutionary lineages in the blue green damselfishes Chromis viridis and Chromis atripectoralis (Pomacentridae). Journal of Fish Biology, 72(2): 451–457, doi: 10.1111/j.1095-8649.2007.01746.x
    Fu Yunxin. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2): 915–925, doi: 10.1093/genetics/147.2.915
    Gaither M R, Bowen B W, Bordenave T R, et al. 2011. Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the indo-pacific barrier with contemporary overlap in the coral triangle. BMC Evolutionary Biology, 11: 189, doi: 10.1186/1471-2148-11-189
    Gilbert A, Planes S, Andréfouët S, et al. 2007. First observation of the giant clam Tridacna squamosa in French Polynesia: a species range extension. Coral Reefs, 26(2): 229, doi: 10.1007/s00338-007-0218-x
    Grant W S. 2015. Problems and cautions with sequence mismatch analysis and Bayesian Skyline Plots to infer historical demography. Journal of Heredity, 106(4): 333–346, doi: 10.1093/jhered/esv020
    Guo Wuxia, Banerjee A K, Wu Haidan, et al. 2021. Contrasting phylogeographic patterns in Lumnitzera mangroves across the Indo-West Pacific. Frontiers in Plant Science, 12: 637009, doi: 10.3389/fpls.2021.637009
    Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98
    Harzhauser M, Mandic O, Piller W E, et al. 2008. Tracing back the origin of the Indo-Pacific mollusc fauna: basal Tridacninae from the Oligocene and Miocene of the Sultanate of Oman. Palaeontology, 51(1): 199–213, doi: 10.1111/j.1475-4983.2007.00742.x
    Hasegawa M, Kishino H, Yano T A. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2): 160–174, doi: 10.1007/BF02101694
    Hodge J R, Bellwood D R. 2016. The geography of speciation in coral reef fishes: the relative importance of biogeographical barriers in separating sister-species. Journal of Biogeography, 43(7): 1324–1335, doi: 10.1111/jbi.12729
    Hu Zimin, Kantachumpoo A, Liu Ruoyu, et al. 2018. A Late Pleistocene marine glacial refugium in the south-west of Hainan Island, China: phylogeographical insights from the brown alga Sargassum polycystum. Journal of Biogeography, 45(2): 355–366, doi: 10.1111/jbi.13130
    Hubert N, Dettai A, Pruvost P, et al. 2017. Geography and life history traits account for the accumulation of cryptic diversity among Indo-West Pacific coral reef fishes. Marine Ecology Progress Series, 583: 179–193, doi: 10.3354/meps12316
    Huelsken T, Keyse J, Liggins L, et al. 2013. A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS One, 8(11): e80858, doi: 10.1371/journal.pone.0080858
    Hui Min, Kraemer W E, Seidel C, et al. 2016. Comparative genetic population structure of three endangered giant clams (Cardiidae: Tridacna species) throughout the Indo-West Pacific: implications for divergence, connectivity and conservation. Journal of Molluscan Studies, 82(3): 403–414, doi: 10.1093/mollus/eyw001
    Husson L, Boucher F C, Sarr A C, et al. 2020. Evidence of Sundaland’s subsidence requires revisiting its biogeography. Journal of Biogeography, 47(4): 843–853, doi: 10.1111/jbi.13762
    Ibáñez C M, Poulin E. 2014. Genetic structure and diversity of squids with contrasting life histories in the Humboldt current system. Hidrobiológica, 24(1): 1–10
    Jackson A M, Ambariyanto, Erdmann M V, et al. 2014. Phylogeography of commercial tuna and mackerel in the Indonesian Archipelago. Bulletin of Marine Science, 90(1): 471–492, doi: 10.5343/bms.2012.1097
    Jeon J Y, Jung J H, Suk H Y, et al. 2021. The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion. Scientific Reports, 11(1): 9193, doi: 10.1038/s41598-021-88238-z
    Kemp J. 1998. Zoogeography of the coral reef fishes of the Socotra Archipelago. Journal of Biogeography, 25(5): 919–933, doi: 10.1046/j.1365-2699.1998.00249.x
    Kemp J. 2000. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of reef fishes from Arabia. Fauna of Arabia, 18: 293–321
    Keyse J, Treml E A, Huelsken T, et al. 2018. Historical divergences associated with intermittent land bridges overshadow isolation by larval dispersal in co-distributed species of Tridacna giant clams. Journal of Biogeography, 45(4): 848–858, doi: 10.1111/jbi.13163
    Klausewitz W. 1989. Evolutionary history and zoogeography of the Red Sea ichthyofauna. Fauna of Saudi Arabia, 10: 310–337
    Kleiven H F, Jansen E, Fronval T, et al. 2002. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma) – ice-rafted detritus evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 184(3–4): 213–223
    Knittweis L, Kraemer, W E, Timm J, et al. 2009. Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conservation Genetics, 10(1): 241–249, doi: 10.1007/s10592-008-9566-5
    Knowles L L, Richards C L. 2005. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Molecular Ecology, 14(13): 4023–4032, doi: 10.1111/j.1365-294X.2005.02711.x
    Kochzius M, Nuryanto A. 2008. Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity. Molecular Ecology, 17(17): 3775–3787, doi: 10.1111/j.1365-294X.2008.03803.x
    Kousteni V, Kasapidis P, Kotoulas G, et al. 2015. Strong population genetic structure and contrasting demographic histories for the small-spotted catshark (Scyliorhinus canicula) in the Mediterranean Sea. Heredity, 114(3): 333–343, doi: 10.1038/hdy.2014.107
    Kürten B, Al-Aidaroos A M, Struck U, et al. 2014. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. Journal of Sea Research, 85: 379–394, doi: 10.1016/j.seares.2013.07.008
    Lavery S, Moritz C, Fielder D R. 1996. Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Molecular Ecology, 5(4): 557–570, doi: 10.1111/j.1365-294X.1996.tb00347.x
    Lee L K, Neo M L, Lim Z F, et al. 2022. Population status and genetic diversity of two endangered giant clams (Tridacna squamosa and Tridacna maxima) on the fringing reefs of Perhentian Islands, Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems, 32(6): 1005–1021, doi: 10.1002/aqc.3807
    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451–1452, doi: 10.1093/bioinformatics/btp187
    Liu Jun, Cui Dan, Wang Hui, et al. 2020. Extensive cryptic diversity of giant clams (Cardiidae: Tridacninae) revealed by DNA-sequence-based species delimitation approaches with new data from Hainan Island, South China Sea. Journal of Molluscan Studies, 86(1): 56–63, doi: 10.1093/mollus/eyz033
    Lizano A M D, Santos M D. 2014. Updates on the status of giant clams Tridacna spp. and Hippopus hippopus in the Philippines using mitochondrial CO1 and 16S rRNA genes. Philippine Science Letters, 7(1): 187–200
    Lucas J S. 1988. Giant clams: description, distribution and life history. In: Copland J W, Lucas J S, eds. Giant Clams in Asia and the Pacific. Canberra: ACIAR, 21–32
    Ludt W B, Rocha L A. 2015. Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. Journal of Biogeography, 42(1): 25–38, doi: 10.1111/jbi.12416
    Machado A P, Cumer T, Iseli C, et al. 2022. Unexpected post-glacial colonisation route explains the white colour of barn owls (Tyto alba) from the British Isles. Molecular Ecology, 31(2): 482–497, doi: 10.1111/mec.16250
    Mamat N S, Yusuf Y, Nor S A M, et al. 2021. DNA barcoding of endangered giant clams in islands off the east coast of Peninsular Malaysia. Journal of Sustainability Science and Management, 16(5): 35–47, doi: 10.46754/jssm.2021.07.003
    Marino I A M, Pujolar J M, Zane L. 2011. Reconciling deep calibration and demographic history: Bayesian inference of post glacial colonization patterns in Carcinus aestuarii (Nardo, 1847) and C. maenas (Linnaeus, 1758). PLoS One, 6(12): e28567, doi: 10.1371/journal.pone.0028567
    McManus J W. 1985. Marine speciation, tectonics and sea-level changes in Southeast Asia. In: Proceedings of the Fifth International Coral Reef Congress. Tahiti, 133–138
    McMillan W O, Palumbi S R. 1995. Concordant evolutionary patterns among Indo-West Pacific butterfly fishes. Proceedings of the Royal Society B: Biological Sciences, 260(1358): 229–236, doi: 10.1098/rspb.1995.0085
    Mudelsee M, Schulz M. 1997. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters, 151(1-2): 117–123, doi: 10.1016/S0012-821X(97)00114-3
    Muhs D R, Simmons K R, Steinke B. 2002. Timing and warmth of the last interglacial period: new U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America. Quaternary Science Reviews, 21(12-13): 1355–1383, doi: 10.1016/S0277-3791(01)00114-7
    Nee S, May R M, Harvey P H. 1994. The reconstructed evolutionary process. Philosophical Transactions of the Royal Society B: Biological Sciences, 344(1309): 305–311, doi: 10.1098/rstb.1994.0068
    Neo M L, Todd P A. 2012. Population density and genetic structure of the giant clams Tridacna crocea and T. squamosa on Singapore’s reefs. Aquatic Biology, 14(3): 265–275, doi: 10.3354/ab00400
    Posada D, Crandall K A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14(9): 817–818, doi: 10.1093/bioinformatics/14.9.817
    Raitsos D E, Pradhan Y, Brewin R J W, et al. 2013. Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One, 8(6): e64909, doi: 10.1371/journal.pone.0064909
    Rambaut A. 2012. FigTree v 1.4. 4. http://tree.bio.ed.ac.uk/software/Figtree [2012-10-08/2013-02-15]
    Rambaut A, Drummond A J. 2009. Tracer v 1.5. Institute of evolutionary biology, university of edinburg. http://beast.bio.ed.ac.uk/Tracer [2009-11-30/2012-12-05]
    Ramos-Onsins S E, Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19(12): 2092–2100, doi: 10.1093/oxfordjournals.molbev.a004034
    Remerie T, Vierstraete A, Weekers P H H, et al. 2009. Phylogeography of an estuarine mysid, Neomysis integer (Crustacea, Mysida), along the north-east Atlantic coasts. Journal of Biogeography, 36(1): 39–54, doi: 10.1111/j.1365-2699.2008.01970.x
    Riccardi A C. 2009. IUGS ratified ICS recommendation on redefinition of Pleistocene and formal definition of base Quaternary. International Union of Geological Sciences
    Rogers A R. 1995. Genetic evidence for a Pleistocene population explosion. Evolution, 49(4): 608–615, doi: 10.2307/2410314
    Rogers A R, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3): 552–559
    Rohling E J, Fenton M, Jorissen F J, et al. 1998. Magnitudes of sea-level lowstands of the past 500, 000 years. Nature, 394(6689): 162–165, doi: 10.1038/28134
    Ronquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46(1): 195–203, doi: 10.1093/sysbio/46.1.195
    Schneider J A, Foighil D Ó. 1999. Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Molecular Phylogenetics and Evolution, 13(1): 59–66, doi: 10.1006/mpev.1999.0636
    Siddall M, Rohling E J, Almogi-Labin A, et al. 2003. Sea-level fluctuations during the last glacial cycle. Nature, 423(6942): 853–858, doi: 10.1038/nature01690
    Smeed D. 1997. Seasonal variation of the flow in the Strait of Bab al Mandab. Oceanologica Acta, 20(6): 773–781
    Sofianos S S, Johns W E. 2007. Observations of the summer Red Sea circulation. Journal of Geophysical Research: Oceans, 112(C6): C06025
    Sofianos S S, Johns W E, Murray S P. 2002. Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(7-8): 1323–1340, doi: 10.1016/S0967-0645(01)00164-3
    Spalding M D, Ravilious C, Green E P. 2001. World Atlas of Coral reefs. Berkeley: University of California Press, 432
    Su Y, Hung J H, Kubo H, et al. 2014. Tridacna noae (Röding, 1798)-a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. Raffles Bulletin of Zoology, 62: 124–135
    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585–595, doi: 10.1093/genetics/123.3.585
    Tarnowska K, Chenuil A, Nikula R, et al. 2010. Complex genetic population structure of the bivalve Cerastoderma glaucum in a highly fragmented lagoon habitat. Marine Ecology Progress Series, 406: 173–184, doi: 10.3354/meps08549
    Timm J, Figiel M, Kochzius M. 2008. Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity. Molecular Phylogenetics and Evolution, 49(1): 268–276, doi: 10.1016/j.ympev.2008.04.024
    Timm J, Kochzius M. 2008. Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris). Molecular Ecology, 17(18): 3999–4014, doi: 10.1111/j.1365-294X.2008.03881.x
    Timm J, Planes S, Kochzius M. 2012. High similarity of genetic population structure in the false clown anemonefish (Amphiprion ocellaris) found in microsatellite and mitochondrial control region analysis. Conservation Genetics, 13(3): 693–706, doi: 10.1007/s10592-012-0318-1
    Tzedakis P C, Channell J E T, Hodell D A, et al. 2012. Determining the natural length of the current interglacial. Nature Geoscience, 5(2): 138–141, doi: 10.1038/ngeo1358
    Vavrus S J, He Feng, Kutzbach J E, et al. 2018. Glacial inception in Marine Isotope Stage 19: an orbital analog for a natural Holocene climate. Scientific Reports, 8(1): 10213, doi: 10.1038/s41598-018-28419-5
    Voris H K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27(5): 1153–1167, doi: 10.1046/j.1365-2699.2000.00489.x
    Wilson M A, Curran H A, White B. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia, 31(3): 241–250, doi: 10.1111/j.1502-3931.1998.tb00513.x
    Woodland D J. 1983. Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bulletin of Marine Science, 33(3): 713–717
    Wörheide G, Epp L S, Macis L. 2008. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evolutionary Biology, 8: 24
    Yamamoto T, Tsuda Y, Takayama K, et al. 2019. The presence of a cryptic barrier in the West Pacific Ocean suggests the effect of glacial climate changes on a widespread sea-dispersed plant, Vigna marina (Fabaceae). Ecology and Evolution, 9(15): 8429–8440, doi: 10.1002/ece3.5099
    Ye Junwei, Wu Haiyang, Fu Mengjiao, et al. 2021. Insights into the significance of the Chinense Loess Plateau for preserving biodiversity from the phylogeography of Speranskia tuberculata (Euphorbiaceae). Frontiers in Plant Science, 12: 604251, doi: 10.3389/fpls.2021.604251
    Yin Qiuzhen, Berger A. 2012. Individual contribution of insolation and CO2 to the interglacial climates of the past 800, 000 years. Climate Dynamics, 38(3): 709–724
    Yu Yan, Harris A J, Blair C, et al. 2015. RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87: 46–49, doi: 10.1016/j.ympev.2015.03.008
    Zagwijn W H. 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews, 15(5-6): 451–469, doi: 10.1016/0277-3791(96)00011-X
    Zelada-Mázmela E, Reyes-Flores L E, Sánchez-Velásquez J J, et al. 2022. Population structure and demographic history of the gastropod Thaisella chocolata (Duclos, 1832) from the Southeast Pacific inferred from mitochondrial DNA analyses. Ecology and Evolution, 12(9): e9276, doi: 10.1002/ece3.9276
    Zhao Min, Chang Yongbin, Kimball R T, et al. 2019. Pleistocene glaciation explains the disjunct distribution of the Chestnut‐vented Nuthatch (Aves, Sittidae). Zoologica Scripta, 48(1): 33–45, doi: 10.1111/zsc.12327
    Zhong Kaile, Song Xiaohan, Choi H G, et al. 2020. MtDNA-based phylogeography of the red alga Agarophyton vermiculophyllum (Gigartinales, Rhodophyta) in the native northwest Pacific. Frontiers in Marine Science, 7: 366, doi: 10.3389/fmars.2020.00366
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (176) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return