Citation: | Lingfang Fan, Min Chen, Zifei Yang, Minfang Zheng, Yusheng Qiu. Alleviated photoinhibition on nitrification in the Indian Sector of the Southern Ocean[J]. Acta Oceanologica Sinica, 2024, 43(7): 52-69. doi: 10.1007/s13131-024-2379-7 |
Alcamán-Arias M E, Cifuentes-Anticevic J, Díez B, et al. 2022. Surface ammonia-oxidizer abundance during the late summer in the west Antarctic coastal system. Frontiers in Microbiology, 13: 821902, doi: 10.3389/fmicb.2022.821902
|
Alonso-Sáez L, Andersson A, Heinrich F, et al. 2011. High archaeal diversity in Antarctic circumpolar deep waters. EnvironmentalMicrobiology Reports, 3(6): 689–697, doi: 10.1111/j.1758-2229.2011.00282.x
|
Arp D J, Sayavedra-Soto L A, Hommes N G. 2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178(4): 250–255, doi: 10.1007/s00203-002-0452-0
|
Baer S E, Connelly T L, Sipler R E, et al. 2014. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer. Global Biogeochemical Cycles, 28(12): 1455–1466, doi: 10.1002/2013gb004765
|
Beman J M, Popp B N, Alford S E. 2012. Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnology and Oceanography, 57(3): 711–726, doi: 10.4319/lo.2012.57.3.0711
|
Bianchi M, Feliatra F, Tréguer P, et al. 1997. Nitrification rates, ammonium and nitrate distribution in upper layers of the water column and in sediments of the Indian sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 44(5): 1017–1032, doi: 10.1016/s0967-0645(96)00109-9
|
Cavagna A J, Fripiat F, Elskens M, et al. 2015. Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean. Biogeosciences, 12(21): 6515–6528, doi: 10.5194/bg-12-6515-2015
|
Cavan E L, Belcher A, Atkinson A, et al. 2019. The importance of Antarctic krill in biogeochemical cycles. Nature Communications, 10(1): 4742, doi: 10.1038/s41467-019-12668-7
|
Chen Yangjun, Chen Jinxu, Wang Yi, et al. 2023. Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes. Acta Oceanologica Sinica, 42(4): 16–24, doi: 10.1007/s13131-022-2111-4
|
Clark D R, Rees A P, Ferrera C M, et al. 2022. Nitrite regeneration in the oligotrophic Atlantic Ocean. Biogeosciences, 19(5): 1355–1376, doi: 10.5194/bg-19-1355-2022
|
Clark D R, Widdicombe C E, Rees A P, et al. 2016. The significance of nitrogen regeneration for new production within a filament of the Mauritanian upwelling system. Biogeosciences, 13(10): 2873–2888, doi: 10.5194/bg-13-2873-2016
|
Damashek J, Pettie K P, Brown Z W, et al. 2017. Regional patterns in ammonia-oxidizing communities throughout Chukchi Sea waters from the Bering Strait to the Beaufort Sea. Aquatic Microbial Ecology, 79(3): 273–286, doi: 10.3354/ame01834
|
Davidson A T, Scott F J, Nash G V, et al. 2010. Physical and biological control of protistan community composition, distribution and abundance in the seasonal ice zone of the Southern Ocean between 30°E and 80°E. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(9–10): 828–848, doi: 10.1016/j.dsr2.2009.02.011
|
DeVries T. 2014. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles, 28(7): 631–647, doi: 10.1002/2013gb004739
|
Feng Yubin, Li Dong, Zhao Jun, et al. 2022. Effects of sea ice melt water input on phytoplankton biomass and community structure in the eastern Amundsen Sea. Advances in Polar Science, 33(1): 14–27, doi: 10.13679/j.advps.2021.0017
|
Fernández C, Farías L. 2012. Assimilation and regeneration of inorganic nitrogen in a coastal upwelling system: ammonium and nitrate utilization. Marine Ecology Progress Series, 451: 1–14, doi: 10.3354/meps09683
|
Fernández C, Farías L, Alcaman M E. 2009. Primary production and nitrogen regeneration processes in surface waters of the Peruvian upwelling system. Progress in Oceanography, 83(1–4): 159–168, doi: 10.1016/j.pocean.2009.07.010
|
Francis C A, Roberts K J, Beman J M, et al. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(41): 14683–14688, doi: 10.1073/pnas.0506625102
|
Fripiat F, Elskens M, Trull T W, et al. 2015. Significant mixed layer nitrification in a natural iron-fertilized bloom of the Southern Ocean. Global Biogeochemical Cycles, 29(11): 1929–1943, doi: 10.1002/2014gb005051
|
Fukushima T, Wu Y J, Whang L M. 2012. The influence of salinity and ammonium levels on amoA mRNA expression of ammonia-oxidizing prokaryotes. Water Science and Technology, 65(12): 2228–2235, doi: 10.2166/wst.2012.142
|
Füssel J, Lam P, Lavik G, et al. 2012. Nitrite oxidation in the Namibian oxygen minimum zone. The ISME Journal, 6(6): 1200–1209, doi: 10.1038/ismej.2011.178
|
Gao Libao, Zu Yongcan, Guo Guijun, et al. 2022. Recent changes and distribution of the newly-formed Cape Darnley bottom water, East Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 201: 105119, doi: 10.1016/j.dsr2.2022.105119
|
Glibert P M, Wilkerson F P, Dugdale R C, et al. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnology and Oceanography, 61(1): 165–197, doi: 10.1002/lno.10203
|
Gruber N, Bakker D C E, DeVries T, et al. 2023. Trends and variability in the ocean carbon sink. Nature Reviews Earth & Environment, 4(2): 119–134, doi: 10.1038/s43017-022-00381-x
|
Guerrero M A, Jones R D. 1996. Photoinhibition of marine nitrifying bacteria. Ⅰ. wavelength-dependent response. Marine Ecology Progress Series, 141: 183–192, doi: 10.3354/meps141183
|
Gwak J H, Awala S I, Kim S J, et al. 2023. Transcriptomic insights into archaeal nitrification in the Amundsen Sea Polynya, Antarctica. Journal of Microbiology, 61(11): 967–980, doi: 10.21203/rs.3.rs-2763233/v1
|
Healey F P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microbial Ecology, 5(4): 281–286, doi: 10.1007/bf02020335
|
Herraiz-Borreguero L, Lannuzel D, van der Merwe P, et al. 2016. Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica. Journal of Geophysical Research: Oceans, 121(8): 6009–6020, doi: 10.1002/2016jc011687
|
Heywood K J, Sparrow M D, Brown J, et al. 1999. Frontal structure and Antarctic bottom water flow through the Princess Elizabeth Trough, Antarctica. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 46(7): 1181–1200, doi: 10.1016/s0967-0637(98)00108-3
|
Hollibaugh J T. 2017. Oxygen and the activity and distribution of marine Thaumarchaeota. Environmental Microbiology Reports, 9(3): 186–188, doi: 10.1111/1758-2229.12534
|
Hooper A B, Terry K R. 1974. Photoinactivation of ammonia oxidation in Nitrosomonas. Journal of Bacteriology, 119(3): 899–906, doi: 10.1128/jb.119.3.899-906.1974
|
Horak R E A, Qin Wei, Bertagnolli A D, et al. 2018. Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnology and Oceanography, 63(2): 741–757, doi: 10.1002/lno.10665
|
Horak R E A, Qin Wei, Schauer A J, et al. 2013. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. The ISME Journal, 7(10): 2023–2033, doi: 10.1038/ismej.2013.75
|
Hubot N D, Giering S L C, Füssel J, et al. 2021. Evidence of nitrification associated with globally distributed pelagic jellyfish. Limnology and Oceanography, 66(6): 2159–2173, doi: 10.1002/lno.11736
|
Kalanetra K M, Bano N, Hollibaugh J T. 2009. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environmental Microbiology, 11(9): 2434–2445, doi: 10.1111/j.1462-2920.2009.01974.x
|
Kemeny P C, Weigand M A, Zhang Run, et al. 2016. Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the Antarctic Ocean. Global Biogeochemical Cycles, 30(7): 1069–1085, doi: 10.1002/2015gb005350
|
Kim J G, Park S J, Quan Zhexue, et al. 2014. Unveiling abundance and distribution of planktonic Bacteria and Archaea in a polynya in Amundsen Sea, Antarctica. Environmental Microbiology, 16(6): 1566–1578, doi: 10.1111/1462-2920.12287
|
Kim J G, Park S J, Sinninghe Damsté J S, et al. 2016. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences of the United States of America, 113(28): 7888–7893, doi: 10.1073/pnas.1605501113
|
Law C S, Ling R D. 2001. Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 48(11–12): 2509–2527, doi: 10.1016/s0967-0645(01)00006-6
|
Liu Li, Chen Mingming, Wan Xianhui, et al. 2023. Reduced nitrite accumulation at the primary nitrite maximum in the cyclonic eddies in the western North Pacific subtropical gyre. Science Advances, 9(33): eade2078, doi: 10.1126/sciadv.ade2078
|
Liu Hao, Zhou Peng, Cheung Shunyan, et al. 2022. Distribution and oxidation rates of Ammonia-Oxidizing Archaea influenced by the coastal upwelling off eastern Hainan Island. Microorganisms, 10(5): 952, doi: 10.3390/microorganisms10050952
|
Lomas M W, Glibert P M. 2000. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. Journal of Phycology, 36(5): 903–913, doi: 10.1046/j.1529-8817.2000.99029.x
|
Lu Shimin, Liu Xingguo, Liu Chong, et al. 2020. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems. Reviews in Environmental Science and Bio/Technology, 19(3): 531–542, doi: 10.1007/s11157-020-09540-2
|
Lücker S, Wagner M, Maixner F, et al. 2010. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(30): 13479–13484, doi: 10.1073/pnas.1003860107
|
Luo Haiwei, Tolar B B, Swan B K, et al. 2014. Single-cell genomics shedding light on marine Thaumarchaeota diversification. The ISME Journal, 8(3): 732–736, doi: 10.1038/ismej.2013.202
|
MacIsaac J J, Dugdale R C. 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep Sea Research and Oceanographic Abstracts, 16(1): 45–57, doi: 10.1016/0011-7471(69)90049-7
|
Martens-Habbena W, Berube P M, Urakawa H, et al. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266): 976–979, doi: 10.1038/nature08465
|
Masson-Delmotte V, Zhai Panmao, Pirani A, et al. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, doi: 10.1017/9781009157896
|
Mdutyana M, Marshall T, Sun Xin, et al. 2022a. Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector. Biogeosciences, 19(14): 3425–3444, doi: 10.5194/bg-19-3425-2022
|
Mdutyana M, Sun Xin, Burger J M, et al. 2022b. The kinetics of ammonium uptake and oxidation across the Southern Ocean. Limnology and Oceanography, 67(4): 973–991, doi: 10.1002/lno.12050
|
Mdutyana M, Thomalla S J, Philibert R, et al. 2020. The seasonal cycle of nitrogen uptake and nitrification in the Atlantic Sector of the Southern Ocean. Global Biogeochemical Cycles, 34(7): e2019GB006363, doi: 10.1029/2019GB006363
|
Merbt S N, Stahl D A, Casamayor E O, et al. 2012. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiology Letters, 327(1): 41–46, doi: 10.1111/j.1574-6968.2011.02457.x
|
Morris J J, Rose A L, Lu Zhiying. 2022. Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biology, 52: 102285, doi: 10.1016/j.redox.2022.102285
|
Murray A E, Wu Keying, Moyer C L, et al. 1999. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquatic Microbial Ecology, 18(3): 263–273, doi: 10.3354/ame018263
|
Newell S E, Fawcett S E, Ward B B. 2013. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the Sargasso Sea. Limnology and Oceanography, 58(4): 1491–1500, doi: 10.4319/lo.2013.58.4.1491
|
Olson R J. 1981. 15N tracer studies of the primary nitrite maximum. Journal of Marine Research, 39(2): 203–226
|
Orsi A H, Whitworth T, Nowlin W D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 42(5): 641–673, doi: 10.1016/0967-0637(95)00021-w
|
Painter S C. 2011. On the significance of nitrification within the euphotic zone of the subpolar North Atlantic (Iceland basin) during summer 2007. Journal of Marine Systems, 88(2): 332–335, doi: 10.1016/j.jmarsys.2011.05.001
|
Peng Xuefeng, Fawcett S E, van Oostende N, et al. 2018. Nitrogen uptake and nitrification in the subarctic North Atlantic Ocean. Limnology and Oceanography, 63(4): 1462–1487, doi: 10.1002/lno.10784
|
Peng Xuefeng, Fuchsman C A, Jayakumar A, et al. 2016. Revisiting nitrification in the Eastern Tropical South Pacific: a focus on controls. Journal of Geophysical Research: Oceans, 121(3): 1667–1684, doi: 10.1002/2015jc011455
|
Petrou K, Kranz S A, Trimborn S, et al. 2016. Southern Ocean phytoplankton physiology in a changing climate. Journal of Plant Physiology, 203: 135–150, doi: 10.1016/j.jplph.2016.05.004
|
Proctor C, Coupel P, Casciotti K, et al. 2023. Light, ammonium, pH, and phytoplankton competition as environmental factors controlling nitrification. Limnology and Oceanography, 68(7): 1490–1503, doi: 10.1002/lno.12359
|
Qin Wei, Amin S A, Martens-Habbena W, et al. 2014. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 111(34): 12504–12509, doi: 10.1073/pnas.1324115111
|
Raes E J, Bodrossy L, van de Kamp J, et al. 2018. Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 115(35): EB266–EB275, doi: 10.1073/pnas.1719335115
|
Raes E J, van de Kamp J, Bodrossy L, et al. 2020. N2 fixation and new insights into nitrification from the ice-edge to the equator in the South Pacific Ocean. Frontiers in Marine Science, 7: 389, doi: 10.3389/fmars.2020.00389
|
Rees A P, Woodward E M S, Joint I. 2006. Concentrations and uptake of nitrate and ammonium in the Atlantic Ocean between 60°N and 50°S. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 53(14–16): 1649–1665, doi: 10.1016/j.dsr2.2006.05.008
|
Santoro A E, Buchwald C, Knapp A N, et al. 2021. Nitrification and Nitrous Oxide production in the offshore waters of the Eastern Tropical South Pacific. Global Biogeochemical Cycles, 35(2): e2020GB006716, doi: 10.1029/2020gb006716
|
Santoro A E, Dupont C L, Richter R A, et al. 2015. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 112(4): 1173–1178, doi: 10.1073/pnas.1416223112
|
Santoro A E, Richter R A, Dupont C L. 2019. Planktonic marine archaea. Annual Review of Marine Science, 11: 131–158, doi: 10.1146/annurev-marine-121916-063141
|
Santoro A E, Saito M A, Goepfert T J, et al. 2017. Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnology and Oceanography, 62(5): 1984–2003, doi: 10.1002/lno.10547
|
Sarthou G, Bucciarelli E, Chever F, et al. 2011. Labile Fe(Ⅱ) concentrations in the Atlantic sector of the Southern Ocean along a transect from the subtropical domain to the Weddell Sea Gyre. Biogeosciences, 8(9): 2461–2479, doi: 10.5194/bg-8-2461-2011
|
Shafiee R T, Snow J T, Zhang Qiong, et al. 2019. Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1. The ISME Journal, 13(9): 2295–2305, doi: 10.1038/s41396-019-0434-8
|
Shiozaki T, Ijichi M, Fujiwara A, et al. 2019. Factors regulating nitrification in the Arctic Ocean: potential impact of sea ice reduction and ocean acidification. Global Biogeochemical Cycles, 33(8): 1085–1099, doi: 10.1029/2018gb006068
|
Shiozaki T, Ijichi M, Isobe K, et al. 2016. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. The ISME Journal, 10(9): 2184–2197, doi: 10.1038/ismej.2016.18
|
Sigman D M, Casciotti K L, Andreani M, et al. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73(17): 4145–4153, doi: 10.1021/ac010088e
|
Sintes E, De Corte D, Haberleitner E, et al. 2016. Geographic distribution of Archaeal Ammonia Oxidizing ecotypes in the Atlantic Ocean. Frontiers in Microbiology, 7: 77, doi: 10.3389/fmicb.2016.00077
|
Smith J M, Casciotti K L, Chavez F P, et al. 2014a. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. The ISME Journal, 8(8): 1704–1714, doi: 10.1038/ismej.2014.11
|
Smith J M, Chavez F P, Francis C A. 2014b. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS One, 9(9): e108173, doi: 10.1371/journal.pone.0108173
|
Smith J M, Damashek J, Chavez F P, et al. 2016. Factors influencing nitrification rates and the abundance and transcriptional activity of ammonia-oxidizing microorganisms in the dark northeast Pacific Ocean. Limnology and Oceanography, 61(2): 596–609, doi: 10.1002/lno.10235
|
Smith A J R, Nelson T, Ratnarajah L, et al. 2022. Identifying potential sources of iron-binding ligands in coastal Antarctic environments and the wider Southern Ocean. Frontiers in Marine Science, 9: 948772, doi: 10.3389/fmars.2022.948772
|
Smith A J R, Ratnarajah L, Holmes T M, et al. 2021. Circumpolar deep water and shelf sediments support late summer microbial iron remineralization. Global Biogeochemical Cycles, 35(11): e2020GB006921, doi: 10.1029/2020gb006921
|
Sow S L S, Brown M V, Clarke L J, et al. 2022. Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environmental Microbiology, 24(5): 2449–2466, doi: 10.1111/1462-2920.15906
|
Tagliabue A, Mtshali T, Aumont O, et al. 2012. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences, 9(6): 2333–2349, doi: 10.5194/bg-9-2333-2012
|
Talley L D, Pickard G L, EmeryW J, et al. 2011. Descriptive Physical Oceanography. Pittsburgh: Academic Press
|
Tolar B B, Powers L C, Miller W L, et al. 2016a. Ammonia oxidation in the ocean can be inhibited by nanomolar concentrations of hydrogen peroxide. Frontiers in Marine Science, 3: 237, doi: 10.3389/fmars.2016.00237
|
Tolar B B, Reji L, Smith J M, et al. 2020. Time series assessment of Thaumarchaeota ecotypes in Monterey Bay reveals the importance of water column position in predicting distribution-environment relationships. Limnology and Oceanography, 65(9): 2041–2055, doi: 10.1002/lno.11436
|
Tolar B B, Ross M J, Wallsgrove N J, et al. 2016b. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. The ISME Journal, 10(11): 2605–2619, doi: 10.1038/ismej.2016.61
|
Valdés V, Fernandez C, Molina V, et al. 2018. Nitrogen excretion by copepods and its effect on ammonia-oxidizing communities from a coastal upwelling zone. Limnology and Oceanography, 63(1): 278–294, doi: 10.1002/lno.10629
|
Vichi M, Pinardi N, Masina S. 2007. A generalized model of pelagic biogeochemistry. for the global ocean ecosystem. Part Ⅰ: theory. Journal of Marine Systems, 64(1–4): 89–109, doi: 10.1016/j.jmarsys.2006.03.006
|
Wan Xianhui, Sheng Huaxia, Dai Minhan, et al. 2018. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nature Communications, 9(1): 915, doi: 10.1038/s41467-018-03363-0
|
Wan Xianhui, Sheng Huaxia, Dai Minhan, et al. 2023. Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump. Nature Geoscience, 16(1): 29–36, doi: 10.1038/s41561-022-01090-2
|
Ward B B. 2011a. Nitrification in the ocean. In: Ward B B, Daniel J A, Martin G K, eds. Nitrification. Washington: Academic Press, 323–345, doi: 10.1128/9781555817145.ch13
|
Ward B B. 2011b. Chapter thirteen—measurement and distribution of nitrification rates in the oceans. Methods in Enzymology, 486: 307–323, doi: 10.1016/b978-0-12-381294-0.00013-4
|
Williams G D, Nicol S, Aoki S, et al. 2010. Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30°E–80°E). Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(9–10): 738–757, doi: 10.1016/j.dsr2.2009.04.020
|
Xu Min Nina, Li Xiaolin, Shi Dalin, et al. 2019. Coupled effect of substrate and light on assimilation and oxidation of regenerated nitrogen in the euphotic ocean. Limnology and Oceanography, 64(3): 1270–1283, doi: 10.1002/lno.11114
|
Yool A, Martin A P, Fernández C, et al. 2007. The significance of nitrification for oceanic new production. Nature, 447(7147): 999–1002, doi: 10.1038/nature05885
|
Zakem E J, Al-Haj A, Church M J, et al. 2018. Ecological control of nitrite in the upper ocean. Nature Communications, 9(1): 1206, doi: 10.1038/s41467-018-03553-w
|
Zakem E J, Bayer B, Qin Wei, et al. 2022. Controls on the relative abundances and rates of nitrifying microorganisms in the ocean. Biogeosciences, 19(23): 5401–5418, doi: 10.5194/bg-19-5401-2022
|
Zhang Yao, Qin Wei, Hou Lei, et al. 2020. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proceedings of the National Academy of Sciences of the United States of America, 117(9): 4823–4830, doi: 10.1073/pnas.1912367117
|
Zu Yongcan, Gao Libao, Guo Guijun, et al. 2022. Changes of circumpolar deep water between 2006 and 2020 in the south-west Indian Ocean, East Antarctica. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 197: 105043, doi: 10.1016/j.dsr2.2022.105043
|