Volume 43 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Yuxin Shi, Hailong Liu, Quanan Zheng. Influence of mixed layer depth on chlorophyll-a concentration in the Southern Ocean[J]. Acta Oceanologica Sinica, 2024, 43(10): 16-32. doi: 10.1007/s13131-024-2353-4
Citation: Yuxin Shi, Hailong Liu, Quanan Zheng. Influence of mixed layer depth on chlorophyll-a concentration in the Southern Ocean[J]. Acta Oceanologica Sinica, 2024, 43(10): 16-32. doi: 10.1007/s13131-024-2353-4

Influence of mixed layer depth on chlorophyll-a concentration in the Southern Ocean

doi: 10.1007/s13131-024-2353-4
Funds:  The fund from Ministry of Science and Technology of the People’s Republic of China under contract No. 2023YFF0805204; the Natural Science Foundation of Yunnan Province under contract No. 202302AN360006; the National Natural Science Foundation of China under contract No. 41776019.
More Information
  • Corresponding author: hailong.liu@ynu.edu.cn
  • Received Date: 2023-12-10
  • Accepted Date: 2024-04-29
  • Available Online: 2024-08-13
  • Publish Date: 2024-10-01
  • The element iron limitation is one of the crucial factors contributing to high nutrient low chlorophyll in the Southern Ocean (SO). Mixed layer dynamics regulate the availability of iron to phytoplankton. In this paper, we investigate the influence of surface iron supplementation triggered by the mixed layer depth (MLD) variation on chlorophyll-a (Chl-a) concentration in the SO on seasonal and interannual timescales. This analysis is based on the Biogeochemical Southern Ocean State Estimate for the period from 2013 to 2021. We provide a comprehensive and systematic mapping of the regions within the SO, where Chl-a is affected by iron input related to MLD deepening. The relationship between the MLD and the Chl-a varies with the latitude on the seasonal time scale. Both the MLD and sea ice melting affect the distribution of Chl-a. On the interannual scale, iron supply due to MLD deepening occurs primarily north of 60°S. Horizontal advection-induced entrainment enhances the surface iron input during the austral summer, which favors Chl-a increase. In addition to the MLD, the melting of sea ice and cooling of the sea surface can also alter iron input and subsequently affect Chl-a distribution in the austral summer. During the austral winter, entrainment can boost iron stocks, stimulating a subsequent spring increase of Chl-a in the SO. Furthermore, sea surface temperature declines during the austral winter, promoting an increased iron supply and creating favorable conditions for the subsequent spring Chl-a increase in the SO.
  • loading
  • Aguirre C, García-Loyola S, Testa G, et al. 2018. Insight into anthropogenic forcing on coastal upwelling off south-central Chile. Elementa: Science of the Anthropocene, 6: 59, doi: 10.1525/elementa.314
    Arrigo K R, Van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research: Oceans, 108(C8): 3271, doi: 10.1029/2002jc001739
    Arrigo K R, Van Dijken G L, Bushinsky S. 2008. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research: Oceans, 113(C8): C08004, doi: 10.1029/2007jc004551
    Behera N, Swain D, Sil S. 2020. Effect of Antarctic sea ice on chlorophyll concentration in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 178: 104853, doi: 10.1016/j.dsr2.2020.104853
    Behrenfeld M J, Doney S C, Lima I, et al. 2013. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Global Biogeochemical Cycles, 27(2): 526–540, doi: 10.1002/gbc.20050
    Blain S, Quéguiner B, Armand L, et al. 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139): 1070–1074, doi: 10.1038/nature05700
    Bowie A R, Van Der Merwe P, Quéroué F, et al. 2015. Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study, KEOPS-2. Biogeosciences, 12(14): 4421–4445, doi: 10.5194/bg-12-4421-2015
    Boyd P W. 2002. Environmental factors controlling phytoplankton processes in the Southern Ocean. Journal of Phycology, 38(5): 844–861, doi: 10.1046/j.1529-8817.2002.t01-1-01203.x
    Boyd P W, Arrigo K R, Strzepek R, et al. 2012. Mapping phytoplankton iron utilization: insights into Southern Ocean supply mechanisms. Journal of Geophysical Research: Oceans, 117(C6): C06009, doi: 10.1029/2011jc007726
    Boyer T P, Baranova O K, Coleman C, et al. 2019. World ocean database 2018. Silver Spring: U.S. Department of Commerce
    Boyd P W, Ellwood M J. 2010. The biogeochemical cycle of iron in the ocean. Nature Geoscience, 3(10): 675–682, doi: 10.1038/ngeo964
    Boyd P, Laroche J, Gall M, et al. 1999. Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand. Journal of Geophysical Research: Oceans, 104(C6): 13395–13408, doi: 10.1029/1999jc900009
    Boyd P W, Watson A J, Law C S, et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407(6805): 695–702, doi: 10.1038/35037500
    Carranza M M, Gille S T. 2015. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. Journal of Geophysical Research: Oceans, 120(1): 304–323, doi: 10.1002/2014jc010203
    Carton J A, Grodsky S A, Liu Hailong. 2008. Variability of the oceanic mixed layer, 1960–2004. Journal of Climate, 21(5): 1029–1047, doi: 10.1175/2007jcli1798.1
    Chu P C. 1993. Generation of low-frequency unstable modes in a coupled equatorial troposphere and ocean mixed-layer model. Journal of the Atmospheric Sciences, 50(5): 731–749, doi: 10.1175/1520-0469(1993)0502.0.CO;2
    Chu P C, Garwood R W Jr. 1991. On the two-phase thermodynamics of the coupled cloud-ocean mixed layer. Journal of Geophysical Research: Oceans, 96(S01): 3425–3436, doi: 10.1029/90JC01862
    Chu P C, Garwood R W Jr, Muller P. 1990. Unstable and damped modes in coupled ocean mixed layer and cloud models. Journal of Marine Systems, 1(1/2): 1–11, doi: 10.1016/0924-7963(90)90051-B
    De Baar H J W, De Jong J T M, Bakker D C E, et al. 1995. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373(6513): 412–415, doi: 10.1038/373412a0
    De Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003, doi: 10.1029/2004jc002378
    Dong Shenfu, Sprintall J, Gille S T, et al. 2008. Southern Ocean mixed-layer depth from argo float profiles. Journal of Geophysical Research: Oceans, 113(C6): C06013, doi: 10.1029/2006jc004051
    Fauchereau N, Tagliabue A, Bopp L, et al. 2011. The response of phytoplankton biomass to transient mixing events in the Southern Ocean. Geophysical Research Letters, 38(17): L17601, doi: 10.1029/2011gl048498
    Frants M, Gille S T, Hatta M, et al. 2013. Analysis of horizontal and vertical processes contributing to natural iron supply in the mixed layer in southern Drake Passage. Deep Sea Research Part II: Topical Studies in Oceanography, 90: 68–76, doi: 10.1016/j.dsr2.2012.06.001
    Galbraith E D, Gnanadesikan A, Dunne J P, et al. 2010. Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7(3): 1043–1064, doi: 10.5194/bg-7-1043-2010
    Geibert W, Assmy P, Bakker D C E, et al. 2010. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre. Global Biogeochemical Cycles, 24(3): GB3007, doi: 10.1029/2009GB003657
    Graham R M, De Boer A M, Van Sebille E, et al. 2015. Inferring source regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data. Deep-Sea Research Part I: Oceanographic Research Papers, 104: 9–25, doi: 10.1016/j.dsr.2015.05.007
    He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2016. Eddy effects on surface chlorophyll in the northern South China Sea: mechanism investigation and temporal variability analysis. Deep Sea Research Part I: Oceanographic Research Papers, 112: 25–36, doi: 10.1016/j.dsr.2016.03.004
    Helber R W, Kara A B, Richman J G, et al. 2012. Temperature versus salinity gradients below the ocean mixed layer. Journal of Geophysical Research: Oceans, 117(C5): C05006, doi: 10.1029/2011jc007382
    Hense I, Bathmann U V, Timmermann R. 2000. Plankton dynamics in frontal systems of the Southern Ocean. Journal of Marine Systems, 27(1–3): 235–252, doi: 10.1016/S0924-7963(00)00070-1
    Korb R E, Whitehouse M J, Atkinson A, et al. 2008. Magnitude and maintenance of the phytoplankton bloom at South Georgia: a naturally iron-replete environment. Marine Ecology Progress Series, 368: 75–91, doi: 10.3354/meps07525
    Lancelot C, De Montety A, Goosse H, et al. 2009. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences, 6(12): 2861–2878, doi: 10.5194/bg-6-2861-2009
    Li Zuchuan, Lozier M S, Cassar N. 2021. Linking Southern Ocean mixed-layer dynamics to net community production on various timescales. Journal of Geophysical Research: Oceans, 126(10): e2021JC017537, doi: 10.1029/2021jc017537
    Ma Jinfeng, Liu Hailong, Lin Pengfei, et al. 2021. Effects of the seasonal variation in chlorophyll concentration on sea surface temperature in the global ocean. Acta Oceanologica Sinica, 40(11): 50–61, doi: 10.1007/s13131-021-1765-7
    Marinov I, Follows M, Gnanadesikan A, et al. 2008. How does ocean biology affect atmospheric pCO2? Theory and models. Journal of Geophysical Research: Oceans, 113(C7): C07032, doi: 10.1029/2007jc004598
    Martin J H, Fitzwater S E, Gordon R M. 1990a. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles, 4(1): 5–12, doi: 10.1029/GB004i001p00005
    Martin J H, Gordon R M, Fitzwater S E. 1990b. Iron in Antarctic waters. Nature, 345(6271): 156–158, doi: 10.1038/345156a0
    Mazloff M R, Heimbach P, Wunsch C. 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography, 40(5): 880–899, doi: 10.1175/2009jpo4236.1
    Mcgillicuddy D J, Sedwick P N, Dinniman M S, et al. 2015. Iron supply and demand in an Antarctic shelf ecosystem. Geophysical Research Letters, 42(19): 8088–8097, doi: 10.1002/2015gl065727
    Medina-Gómez I, Trujillo A A, Marino-Tapia I, et al. 2019. Phytoplankton responses under a joint upwelling event and an algal bloom scenario in the southeast Gulf of Mexico. Continental Shelf Research, 184: 30–43, doi: 10.1016/j.csr.2019.07.006
    Mitchell B G, Brody E A, Holm-Hansen O, et al. 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnology and Oceanography, 36(8): 1662–1677, doi: 10.4319/lo.1991.36.8.1662
    Moline M A, Claustre H, Frazer T K, et al. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology, 10(12): 1973–1980, doi: 10.1111/j.1365-2486.2004.00825.x
    Moore J K, Abbott M R. 2000. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. Journal of Geophysical Research: Oceans, 105(C12): 28709–28722, doi: 10.1029/1999JC000043
    Moore J K, Doney S C, Glover D M, et al. 2001. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 49(1–3): 463–507, doi: 10.1016/S0967-0645(01)00109-6
    Moore J K, Doney S C, Lindsay K. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 18(4): GB4028, doi: 10.1029/2004gb002220
    Pang Shanshan, Wang Xidong, Liu Hailong, et al. 2019. Decadal variability of the barrier layer and forcing mechanism in the Bay of Bengal. Journal of Geophysical Research: Oceans, 124(7): 5289–5307, doi: 10.1029/2018jc014918
    Park J, Oh I S, Kim H C, et al. 2010. Variability of SeaWiFs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep-Sea Research Part I: Oceanographic Research Papers, 57(4): 604–620, doi: 10.1016/j.dsr.2010.01.004
    Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature, 374(6519): 255–257, doi: 10.1038/374255a0
    Qiu Yun, Cai Wenju, Li Li, et al. 2012. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophysical Research Letters, 39(8): L08605, doi: 10.1029/2012gl051441
    Sallée J B, Speer K G, Rintoul S R. 2010. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nature Geoscience, 3(4): 273–279, doi: 10.1038/ngeo812
    Schueler C F, Clement J E, Ardanuy P E, et al. 2002. NPOESS VIIRS sensor design overview. In: Proceedings of SPIE 4483, Earth Observing Systems VI. San Diego, CA, USA: SPIE, 11–23, doi: 10.1117/12.453451
    Shi Yuxin, Liu Hailong, Wang Xidong, et al. 2024. Responses of the southern ocean mixed layer depth to the eastern and central Pacific El Niño events during austral winter. Acta Oceanologica Sinica, 43(7), doi: 10.1007/s13131-023-2228-0
    Smith W O Jr, Comiso J C. 2008. Influence of sea ice on primary production in the Southern Ocean: a satellite perspective. Journal of Geophysical Research: Oceans, 113(C5): C05S93, doi: 10.1029/2007jc004251
    Sverdrup H U. 1953. On conditions for the vernal blooming of phytoplankton. ICES Journal of Marine Science, 18(3): 287–295, doi: 10.1093/icesjms/18.3.287
    Tagliabue A, Sallée J B, Bowie A R, et al. 2014. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience, 7(4): 314–320, doi: 10.1038/ngeo2101
    Taylor J R, Ferrari R. 2011. Ocean fronts trigger high latitude phytoplankton blooms. Geophysical Research Letters, 38(23): L23601, doi: 10.1029/2011gl049312
    Thomalla S J, Fauchereau N, Swart S, et al. 2011. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences, 8(10): 2849–2866, doi: 10.5194/bg-8-2849-2011
    Tripathy S C, Pavithran S, Sabu P, et al. 2015. Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: case study in the subtropical and polar front during austral summer 2011. Deep-Sea Research Part II: Topical Studies in Oceanography, 118: 240–249, doi: 10.1016/j.dsr2.2015.01.004
    Venables H, Moore C M. 2010. Phytoplankton and light limitation in the Southern Ocean: learning from high-nutrient, high-chlorophyll areas. Journal of Geophysical Research: Oceans, 115(C2): C02015, doi: 10.1029/2009jc005361
    Verdy A, Mazloff M R. 2017. A data assimilating model for estimating Southern Ocean biogeochemistry. Journal of Geophysical Research: Oceans, 122(9): 6968–6988, doi: 10.1002/2016jc012650
    Ying Meijia, Liu Hailong, Wang Fuchang, et al. 2019. Spatio-temporal variations of mixed layer depth in Southern Ocean. Oceanologia et Limnologia Sinica (in Chinese), 50(6): 1223–1232, doi: 10.11693/hyhz20190800153
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article views (250) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return