Citation: | Tong Li, Jihui Zhang, Dongling Li, Chengxu Zhou, Chenxi Liu, Hao Xu, Bing Song, Longbin Sha. Diatoms as indicators of environmental change in coastal areas: a case study in Lianjiang coast of East China Sea[J]. Acta Oceanologica Sinica, 2024, 43(8): 47-57. doi: 10.1007/s13131-024-2292-0 |
Abdi H, Williams L J. 2010. Principal component analysis. WIREs Computational Statistics, 2(4): 433–459, doi: 10.1002/wics.101
|
Azhikodan G, Yokoyama K. 2015. Temporal and spatial variation of mixing and movement of suspended sediment in the Macrotidal Chikugo River Estuary. Journal of Coastal Research, 31(3): 680–689, doi: 10.2112/JCOASTRES-D-14-00097.1
|
Battarbee R W, Jones V J, Flower R J, et al. 2001. Diatoms. In: Smol J, Birks H, Last W, eds. Tracking Environmental Change Using Lake Sediments Volume 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Springer, 155–202
|
Benito G, Macklin M G, Zielhofer C, et al. 2015. Holocene flooding and climate change in the Mediterranean. CATENA, 130: 13–33, doi: 10.1016/j.catena.2014.11.014
|
Bennion H, Appleby P G, Phillips G L. 2001. Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. Journal of Paleolimnology, 26(2): 181–204, doi: 10.1023/A:1011137625746
|
Blaine McCleskey R, Cravotta III C A, Miller M P, et al. 2023. Salinity and total dissolved solids measurements for natural waters: An overview and a new salinity method based on specific conductance and water type. Applied Geochemistry, 154: 105684, doi: 10.1016/j.apgeochem.2023.105684
|
Chen Min, Li Yunhai, Qi Hongshuai, et al. 2019. The influence of season and Typhoon Morakot on the distribution of diatoms in surface sediments on the inner shelf of the East China Sea. Marine Micropaleontology, 146: 59–74, doi: 10.1016/j.marmicro.2019.01.003
|
Chen Xu, Liang Jia, Zeng Linghan, et al. 2022. Heterogeneity in diatom diversity response to decadal scale eutrophication in floodplain lakes of the middle Yangtze reaches. Journal of Environmental Management, 322: 116164, doi: 10.1016/j.jenvman.2022.116164
|
Chen Xu, McGowan S, Bu Zhaojun, et al. 2020b. Diatom-based water-table reconstruction in Sphagnum peatlands of northeastern China. Water Research, 174: 115648, doi: 10.1016/j.watres.2020.115648
|
Chen Min, Qi Hongshuai, Intasen W, et al. 2020a. Distributions of diatoms in surface sediments from the Chanthaburi coast, Gulf of Thailand, and correlations with environmental factors. Regional Studies in Marine Science, 34: 100991, doi: 10.1016/j.rsma.2019.100991
|
Chen Xiang, Zhou Weiqi, Pickett S T A, et al. 2016. Diatoms are better indicators of urban stream conditions: A case study in Beijing, China. Ecological Indicators, 60: 265–274, doi: 10.1016/j.ecolind.2015.06.039
|
De Sève M A. 1999. Transfer function between surface sediment diatom assemblages and sea-surface temperature and salinity of the Labrador Sea. Marine Micropaleontology, 36(4): 249–267, doi: 10.1016/S0377-8398(99)00005-5
|
Espinosa M A, Fayó R, Vélez-Agudelo C. 2022. Diatom-based paleoenvironmental reconstruction from the coast of Northern Patagonia, Argentina. Journal of South American Earth Sciences, 116: 103874, doi: 10.1016/j.jsames.2022.103874
|
Fan Jiayu, Jian Xing, Shang Fei, et al. 2021. Underestimated heavy metal pollution of the Minjiang River, SE China: Evidence from spatial and seasonal monitoring of suspended-load sediments. Science of the Total Environment, 760: 142586, doi: 10.1016/j.scitotenv.2020.142586
|
Fayó R, Espinosa M A, Vélez-Agudelo C A, et al. 2018. Diatom-based reconstruction of Holocene hydrological changes along the Colorado River floodplain (northern Patagonia, Argentina). Journal of Paleolimnology, 60(3): 427–443, doi: 10.1007/s10933-018-0031-2
|
Gomes D F, Albuquerque A L S, Torgan L C, et al. 2014. Assessment of a diatom-based transfer function for the reconstruction of lake-level changes in Boqueirão Lake, Brazilian Nordeste. Palaeogeography, Palaeoclimatology, Palaeoecology, 415: 105–116, doi: 10.1016/j.palaeo.2014.07.009
|
Gregersen R, Howarth J D, Atalah J, et al. 2023. Paleo-diatom records reveal ecological change not detected using traditional measures of lake eutrophication. Science of the Total Environment, 867: 161414, doi: 10.1016/j.scitotenv.2023.161414
|
Guo Yujie, Qian Shuben. 2003. Flora algarum marinarum sinicarum (in Chinese), Volume 5, Diatom Phylum, Book 1, Central Outline. Beijing: Science Press, 1–493
|
Håkansson H. 1984. The recent diatom succession of Lake Havgårdssjön, South Sweden. In: Proceedings of the Seventh International Diatom Symposium. Philadelphia: Otto Koeltz, 411–429
|
Hartley B, Barber H G, Carter J R, et al. 1996. An Atlas of British Diatoms. Bristol: Biopress Ltd, 1–601
|
Hassan G S, Espinosa M A, Isla F I. 2007. Dead diatom assemblages in surface sediments from a low impacted estuary: the Quequén Salado river, Argentina. Hydrobiologia, 579(1): 257–270, doi: 10.1007/s10750-006-0407-6
|
Hassan G S, Espinosa M A, Isla F I. 2009. Diatom-based inference model for paleosalinity reconstructions in estuaries along the northeastern coast of Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 275(1–4): 77–91, doi: 10.1016/j.palaeo.2009.02.020
|
Horton B P, Corbett R, Culver S J, et al. 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science, 69(3–4): 381–394, doi: 10.1016/j.ecss.2006.05.007
|
Huang Yue. 2017. Distribution of the surface sediment diatoms in the outer bay of Qinzhou bay of Guangxi. Marine Sciences (in Chinese), 41(1): 96–103, doi: 10.11759/hykx20150927001
|
Huang Yue, Huang Yuanhui. 2016. Characterastics of surface sediments diatom distribution in Zhenzhu Bay of Guangxi. Advances in Marine Science (in Chinese), 34(3): 411–420, doi: 10.3969/j.issn.1671-6647.0000.00.011
|
Huh Chih-An, Su Chih-Chieh. 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu. Marine Geology, 160(1-2): 183–196, doi: 10.1016/S0025-3227(99)00020-1
|
Hustedt F. 1985. The Pennate Diatoms. Koenigstein: Koeltz Scientific Books, 1–918
|
Jiang Yamei, Saito Y, Ta T K O, et al. 2020. Spatial and seasonal variability in grain size, magnetic susceptibility, and organic elemental geochemistry of channel-bed sediments from the Mekong Delta, Vietnam: Implications for hydro-sedimentary dynamic processes. Marine Geology, 420: 106089, doi: 10.1016/j.margeo.2019.106089
|
Jiang Hui, Zheng Yulong, Ran Lihua, et al. 2004. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography. Marine Micropaleontology, 53(3-4): 279–292, doi: 10.1016/j.marmicro.2004.06.005
|
Jin Dexiang, Cheng Zhaodi, Lin Junmin, et al. 1982. Chinese marine benthic diatoms (Volume 1) (in Chinese). Beijing: China Ocean Press, 17–236
|
Jousé A P, Kozlova O G, Muhina V V. 1971. Distribution of diatoms in the surface layer of sediment from the Pacific Ocean. In: Funnell B M, Riedel W R, eds. The Micropalaeontology of Oceans. London: Cambridge University Press, 263–269
|
Juggins S. 2007. C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: Newcastle University, 1–73
|
Klami A, Virtanen S, Kaski S. 2013. Bayesian Canonical correlation analysis. The Journal of Machine Learning Research, 14(1): 965–1003
|
Krammer K, Lange-Bertalot H. 1986. Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, et al, eds. Süsswasserflora von Mitteleuropa, Band 2/1. New York: Gustav Fisher Verlag, 1–876
|
Krammer K, Lange-Bertalot H. 1988. Bacillariophyceae 2. Teil: Bacillariaceae, epithemiaceae, surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, eds. Susswasserflora von Mitteleuropa, Band 2/2. Jena: Gustav Fisher Verlag
|
Krammer K, Lange-Bertalot H. 1991a. Bacillariophyceae 3. Teil: Centrales, fragilariaceae, eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa 2/3. Jena: Gustav Fisher Verlag, 1–576
|
Krammer K, Lange-Bertalot H. 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, kritische ergänzungen zu navicula (Lineolatae) und gomphonema, gesamtliteraturverzeichnis Teil 1-4. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa 2/4. Jena: Gustav Fischer Verlag.
|
López-Belzunce M, Blázquez A M, Carmona P, et al. 2020. Multi proxy analysis for reconstructing the late Holocene evolution of a Mediterranean Coastal Lagoon: Environmental variables within foraminiferal assemblages. CATENA, 187: 104333, doi: 10.1016/j.catena.2019.104333
|
Lei Jiajun, Yang Liyang, Zhu Zhuoyi. 2021. Testing the effects of coastal culture on particulate organic matter using absorption and fluorescence spectroscopy. Journal of Cleaner Production, 325: 129203, doi: 10.1016/j.jclepro.2021.129203
|
Li Dongmei, Liu Guangshan, Li Chao, et al. 2009. Radionuclide distribution in sediments and sedimentary rates in seas surrounding Xiamen. Journal of Oceanography in Taiwan Strait (in Chinese), 28(3): 336–342
|
Li Dongling, Sha Longbin, Li Jialin, et al. 2017. Summer sea-surface temperatures and climatic events in Vaigat Strait, West Greenland, during the Last 5000 Years. Sustainability, 9(5): 704, doi: 10.3390/su9050704
|
Lin Xiaohong, Yin Siyu, Wu Wei, et al. 2020. Genetic diagnosis for heavy typhoon rainfall attenuated by Fujian landfall. Tropical Cyclone Research and Review, 9(3): 178–184, doi: 10.1016/j.tcrr.2020.08.001
|
Lionard M, Muylaert K, Hanoutti A, et al. 2008. Inter-annual variability in phytoplankton summer blooms in the freshwater tidal reaches of the Schelde estuary (Belgium). Estuarine, Coastal and Shelf Science, 79(4): 694–700, doi: 10.1016/j.ecss.2008.06.013
|
Liu Shenfa, Shi Xuefa, Liu Yanguang, et al. 2009. Sedimentation rate of mud area in the East China Sea inner continental shelf. Marine Geology & Quaternary Geology (in Chinese), 29(6): 1–7, doi: 10.3724/SP.J.1140.2009.06001
|
Liu Jingli, Zhang Han, Zhong Rui, et al. 2022. Impacts of wave feedbacks and planetary boundary layer parameterization schemes on air-sea coupled simulations: A case study for Typhoon Maria in 2018. Atmospheric Research, 278: 106344, doi: 10.1016/j.atmosres.2022.106344
|
Lou Sha, Huang Wenrui, Liu Shuguang, et al. 2016. Hurricane impacts on turbidity and sediment in the Rookery Bay National Estuarine Research Reserve, Florida, USA. International Journal of Sediment Research, 31(4): 330–340, doi: 10.1016/j.ijsrc.2016.06.006
|
Mendes S, Fernández-Gómez M J, Resende P, et al. 2009. Spatio-temporal structure of diatom assemblages in a temperate estuary. A STATICO analysis. Estuarine, Coastal and Shelf Science, 84(4): 637–644, doi: 10.1016/j.ecss.2009.08.003
|
Nakanishi R, Ashi J, Miyairi Y, et al. 2022. Holocene coastal evolution, past tsunamis, and extreme wave event reconstructions using sediment cores obtained from the central coast of Hidaka, Hokkaido, Japan. Marine Geology, 443: 106663, doi: 10.1016/j.margeo.2021.106663
|
Nwe L W, Azhikodan G, Yokoyama K, et al. 2021. Spatio-temporal distribution of diatoms and dinoflagellates in the macrotidal Tanintharyi River estuary, Myanmar. Regional Studies in Marine Science, 42: 101634, doi: 10.1016/j.rsma.2021.101634
|
Peng Tong, Zhu Zhuoyi, Du Jinzhou, et al. 2021. Effects of nutrient-rich submarine groundwater discharge on marine aquaculture: A case in Lianjiang, East China Sea. Science of The Total Environment, 786: 147388, doi: 10.1016/j.scitotenv.2021.147388
|
Prelle L R, Graiff A, Gründling-Pfaff S, et al. 2019. Photosynthesis and respiration of baltic sea benthic diatoms to changing environmental conditions and growth responses of selected species as affected by an adjacent peatland (Hütelmoor). Frontiers in Microbiology, 10: 1500, doi: 10.3389/fmicb.2019.01500
|
Qiu Dajun, Zhong Yu, Chen Yongqiang, et al. 2019. Short-term phytoplankton dynamics during typhoon season in and near the Pearl River Estuary, South China Sea. Journal of Geophysical Research: Biogeosciences, 124(2): 274–292, doi: 10.1029/2018JG004672
|
Ran Lihua, Jiang Hui. 2005. Distributions of the surface sediment diatoms from the south China sea and their palaeoceanographic significance. Acta Micropalaeontologica Sinica, 22(1): 97–106
|
Rovira L, Trobajo R, Ibáñez C. 2012. The use of diatom assemblages as ecological indicators in highly stratified estuaries and evaluation of existing diatom indices. Marine Pollution Bulletin, 64(3): 500–511, doi: 10.1016/j.marpolbul.2012.01.005
|
Saifullah A S M, Kamal A H M, Idris M H, et al. 2019. Community composition and diversity of phytoplankton in relation to environmental variables and seasonality in a tropical mangrove estuary. Regional Studies in Marine Science, 32: 100826, doi: 10.1016/j.rsma.2019.100826
|
Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 82: 183–200, doi: 10.1016/j.gca.2010.12.024
|
Sarker S, Yadav A K, Shahadat Hossain M, et al. 2020. The drivers of diatom in subtropical coastal waters: A Bayesian modelling approach. Journal of Sea Research, 163: 101915, doi: 10.1016/j.seares.2020.101915
|
Sha Longbin, Jiang Hui, Liu Yanguang, et al. 2015. Palaeo-sea-ice changes on the North Icelandic shelf during the last millennium: Evidence from diatom records. Science China Earth Sciences, 58(6): 962–970, doi: 10.1007/s11430-015-5061-2
|
Shang Zhiwen, Li Jianfen, Freund H, et al. 2023. Quantitative relationship between surface sedimentary diatoms and water depth in North-Central Bohai Bay, China. China Geology, 6(1): 61–69, doi: 10.31035/cg2022040
|
Shannon C E, Weaver W. 1949. The Mathematical Theory of Communication. Urbana: The University of Illinois Press, 1–117
|
Sun Xueshi, Fan Dejiang, Liao Huijie, et al. 2020. Variation in sedimentary 210Pb over the last 60 years in the Yangtze River Estuary: New insight to the sedimentary processes. Marine Geology, 427: 106240, doi: 10.1016/j.margeo.2020.106240
|
Sun Xueshi, Fan Dejiang, Tian Yuan, et al. 2017. Normalization of excess 210Pb with grain size in the sediment cores from the Yangtze River Estuary and adjacent areas: Implications for sedimentary processes. The Holocene, 28(4): 545–557, doi: 10.1177/0959683617735591
|
Szczerba A, Rzodkiewicz M, Tylmann W. 2023. Modern diatom assemblages and their association with meteorological conditions in two lakes in northeastern Poland. Ecological Indicators, 147: 110028, doi: 10.1016/j.ecolind.2023.110028
|
Ter Braak C J F, Colin Prentice I. 1988. A theory of gradient analysis. Advances in Ecological Research, 18: 271–317, doi: 10.1016/S0065-2504(08)60183-X
|
Ter Braak C J F, Smilauer P. 2012. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Ithaca: Microcomputer Power.
|
Triantaphyllou M V, Ziveri P, Gogou A, et al. 2009. Late Glacial–Holocene climate variability at the south-eastern margin of the Aegean Sea. Marine Geology, 266(1–4): 182–197, doi: 10.1016/j.margeo.2009.08.005
|
Wang Rong, Dearing J A, Langdon P G, et al. 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature, 492(7429): 419–422, doi: 10.1038/nature11655
|
Wang Zhanghua, Jones B G, Chen Ting, et al. 2013. A raised OIS 3 sea level recorded in coastal sediments, southern Changjiang delta plain, China. Quaternary Research, 79(3): 424–438, doi: 10.1016/j.yqres.2013.03.002
|
Wang Qian, Yang Xiangdong, John Anderson N, et al. 2014. Diatom response to climate forcing of a deep, alpine lake (Lugu Hu, Yunnan, SW China) during the Last Glacial Maximum and its implications for understanding regional monsoon variability. Quaternary Science Reviews, 86: 1–12, doi: 10.1016/j.quascirev.2013.12.024
|
Xu Zhimeng, Li Yifan, Lu Yanhong, et al. 2020. Impacts of the Zhe-Min Coastal Current on the biogeographic pattern of microbial eukaryotic communities. Progress in Oceanography, 183: 102309, doi: 10.1016/j.pocean.2020.102309
|
Yang Liyang, Chen Yu, Lei Jiajun, et al. 2022. Effects of coastal aquaculture on sediment organic matter: Assessed with multiple spectral and isotopic indices. Water Research, 223: 118951, doi: 10.1016/j.watres.2022.118951
|
Yang Xiangdong, John Anderson N, Dong Xuhui, et al. 2008. Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwater Biology, 53(7): 1273–1290, doi: 10.1111/j.1365-2427.2007.01921.x
|
Yang Shangshang, Li Yunhai, Lin Yunpeng, et al. 2023. Evolution of sedimentary dynamic process/pattern in the Quanzhou Bay under impact of Typhoon Matmo (2014). Regional Studies in Marine Science, 62: 102974, doi: 10.1016/j.rsma.2023.102974
|
Yu Fengling, Li Nannan, Tian Ganghua, et al. 2023a. A re-evaluation of Holocene relative sea-level change along the Fujian coast, southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 622: 111577,doi: 10.1016/j.palaeo.2023.111577
|
Yu Siwei, Wang Junbo, Rühland K M, et al. 2023b. Spatial distribution of surface-sediment diatom assemblages from 45 Tibetan Plateau lakes and the development of a salinity transfer function. Ecological Indicators, 155: 110952, doi: 10.1016/j.ecolind.2023.110952
|
Zang Zhengchen, George Xue Z, Bao Shaowu, et al. 2018. Numerical study of sediment dynamics during hurricane Gustav. Ocean Modelling, 126: 29–42, doi: 10.1016/j.ocemod.2018.04.002
|
Zhang Rijun. 2014. Construction of digital Aojiang watershed. Applied Mechanics and Materials, 687–691: 2157–2160, doi: 10.4028/www.scientific.net/AMM.687-691.2157
|
Zhao Hui, Tang Danling, Wang Yuqing. 2008. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Marine Ecology Progress Series, 365: 57–65, doi: 10.3354/meps07488
|
Zhou Min, Fang Futao, Zeng Cong, et al. 2022. Community competition is the microorganism feedback to sedimentary carbon degradation process in aquaculture tidal flats. Frontiers in Marine Science, 9: 880120., doi: 10.3389/fmars.2022.880120
|
Zong Yongqiang, Horton B P. 1999. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK. Journal of Quaternary Science, 14(2): 153–167, doi: 10.1002/(SICI)1099-1417(199903)14:2<153::AID-JQS425>3.0.CO;2-6
|
LiTong_Supplementary data.pdf |