Citation: | Regina Kolzenburg, Federica Ragazzola, Laura Tamburello, Katy R. Nicastro, Christopher D. McQuaid, Gerardo I. Zardi. Photosynthetic response to a winter heatwave in leading and trailing edge populations of the intertidal red alga Corallina officinalis (Rhodophyta)[J]. Acta Oceanologica Sinica, 2024, 43(7): 70-77. doi: 10.1007/s13131-023-2275-6 |
Araújo R, Serrão E A, Sousa-Pinto I, et al. 2014. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations. PloS One, 9(3): 92177, doi: 10.1371/journal.pone.0092177
|
Atkinson J, King N G, Wilmes S B, et al. 2020. Summer and winter marine heatwaves favor an invasive over native seaweeds. Journal of Phycology, 56(6): 1591–1600, doi: 10.1111/jpy.13051
|
Badger M R, Björkman O, Armond P A. 1982. An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant, Cell and Environment, 5: 85–99
|
Bates D, Maechler M, Bolker B, et al. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1): 1–48
|
Bennett S, Wernberg T, Arackal Joy B, et al. 2015. Central and rear-edge populations can be equally vulnerable to warming. Nature Communications, 6: 10280, doi: 10.1038/ncomms10280
|
Berkelmans R, Willis B L. 1999. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs, 18: 219–28, doi: 10.1007/s003380050186
|
Bertocci I, Araújo R, Vaselli S, et al. 2011. Marginal populations under pressure: spatial and temporal heterogeneity of Ascophyllum nodosum and associated assemblages affected by human trampling in Portugal. Marine Ecology Progress Series, 439: 73–82, doi: 10.3354/meps09328
|
Bolker B M, Brooks M E, Clark C J, et al. 2009. Generalize linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24(3): 127–135, doi: 10.1016/j.tree.2008.10.008
|
Bridle J R, Vines T H. 2007. Limits to evolution at range margins: when and why does adaptation fail?. Trends in Ecology and Evolution, 22(3): 140–147
|
Brody H M. 2004. Phenotypic Plasticity: Functional and Conceptual Approaches. Oxford: Oxford University Press
|
Brown J H. 1984. On the relationship between abundance and distribution of species. The American Naturalist, 124(2): 255–279, doi: 10.1086/284267
|
Brussard P F. 1984. Geographic patterns and environmental gradients: the central-marginal models in Drosophila revisited. Annual Review of Ecology Systematics, 15: 25–64, doi: 10.1146/annurev.es.15.110184.000325
|
Bulger A J, Tremaine S C. 1985. Magnitude of seasonal effects on heat tolerance in Fundulus heteroclitus. Physiological Zoology, 58: 197–204, doi: 10.1086/physzool.58.2.30158567
|
Chapple J P, Smerdon G R, Berry R J, et al. 1998. Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 229: 53–68, doi: 10.1016/S0022-0981(98)00040-9
|
Charpy-Roubaud C, Sournia A. 1990. The comparative estimation of phytoplanktonic, microphytobenthic and microphytobenthic primary production in the oceans. Marine Microbial Food Webs, 4: 31–57
|
Crawley M J. 2012. The R Book. Chichester, West Sussex, United Kingdom: Wiley
|
Crafts-Brandner S J, Salvucci M E. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant physiology, 129(4): 1773–1780, doi: 10.1104/pp.002170
|
Davison I R. 1987. Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. Journal of Phycology, 23: 273–83, doi: 10.1111/j.1529-8817.1987.tb04135.x
|
Dudgeon S R, Davison I R, Vadas R L. 1990. Freezing tolerance in the intertidal red algae Chondrus crispus and Mastocarpus stellatus: relative importance of acclimation and adaptation. Marine Biology, 106: 36–427, doi: 10.1007/BF01344323
|
Eckert C G, Samis K E, Lougheed S C. 2008. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 17: 1170–1188, doi: 10.1111/j.1365-294X.2007.03659.x
|
Egilsdottir H, Noisette F, Noel L M-L J, et al. 2013. Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology, 160: 2103–2112.
|
Foster M S. 2001. Rhodoliths: between rocks and soft places. Journal of Phycology, 37: 659–667, doi: 10.1046/j.1529-8817.2001.00195.x
|
Fredriksen S. 2003. Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Marine Ecology Progress Series, 260: 71–81, doi: 10.3354/meps260071
|
Guo Q. 2014. Central-marginal population dynamics in species invasions. Frontiers in Ecology and Evolution, 2: 23.
|
Hampe A, Petit R J. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecology letters, 8(5): 461–467, doi: 10.1111/j.1461-0248.2005.00739.x
|
Helmuth B, Harley C D, Halpin P M, et al. 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science, 298(5595): 1015–1017, doi: 10.1126/science.1076814
|
Hind K R, Gabrielson P W, Lindstrom S C, et al. 2014. Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. Journal of Phycology, 50(4): 760–764, doi: 10.1111/jpy.12205
|
Hobday A J, Alexander L, Perkins S, et al. 2016. A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141: 227–238, doi: 10.1016/j.pocean.2015.12.014
|
Hu X P, Appel A G. 2004. Seasonal variation of critical thermal limits and temperature tolerance in Formosan and Eastern subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology, 33: 197–205, doi: 10.1603/0046-225X-33.2.197
|
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri, L. A. Meyer (eds.)]. pp. Geneva, Switzerland, IPCC: 151
|
IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, et al. (eds.)]. Cambridge University Press.
|
IPCC, 2022. Summary for Policymakers [Pörtner H-O, Roberts D C, Poloczanska E S, et al. (eds.)]. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
|
Jones S J, Lima F P, Wethey D S. 2010. Rising environmental temperatures and biogeography: Poleward range contraction of the blue mussel, Mytilus edulis L. , in the western Atlantic. Journal of Biogeography, 37: 2243–2259
|
Kassambara A. 2021. Pipe-friendly framework for basic statistical tests (Version 0.7). https://cran.r-project.org/web/packages/ rstatix/index.html[2021-06-13/2022-09-27]
|
Kim J H, Min J, Kang E J, et al. 2018. Elevated temperature and changed carbonate chemistry: effects on calcification, photosynthesis, and growth of Corallina officinalis (Corallinales, Rhodophyta). Phycologia, 57(3): 280–286, doi: 10.2216/17-71.1
|
King N G, McKeown N J, Smale D A, et al. 2019. Evidence for different thermal ecotypes in range centre and trailing edge kelp populations. Journal of Experimental Marine Biology and Ecology, 514: 10–17
|
Kolzenburg R, 2022. The direct influence of climate change on marginal populations: a review. Aquatic Sciences, 84(2): 1–20
|
Kolzenburg R, Coaten D J, Ragazzola F. 2022. Physiological characterisation of the calcified alga Corallina officinalis (Rhodophyta) from the leading to trailing edge in the Northeast Atlantic. European Journal of Phycology, 58(1): 83–98
|
Kolzenburg R, Nicastro K R, McCoy S J, et al. 2019. Understanding the margin squeeze: Differentiation in fitness-related traits between central and trailing edge populations of Corallina officinalis. Ecology and Evolution, 9(10): 5787–5801, doi: 10.1002/ece3.5162
|
Kübler J E, Davison I R. 1993. High-temperature tolerance of photosynthesis in the red alga Chondrus crispus. Marine Biology, 117: 327–35, doi: 10.1007/BF00345678
|
Laufkötter C, Zscheischler J, Frölicher T L. 2020. High-impact marine heatwaves attributable to human-induced global warming. Science, 369(6511): 1621–1625, doi: 10.1126/science.aba0690
|
Layne J R Jr, Claussen D L, Manis M L. 1987. Effects of acclimation temperature, season, and time of day on the critical thermal maxima and minima of the crayfish Orconectes rusticus. Journal of Thermal Biology, 12: 183–7, doi: 10.1016/0306-4565(87)90001-5
|
Lima F P, Ribeiro P A, Queiroz N, et al. 2007. Do distributional shifts of northern and southern species of algae match the warming pattern?. Global Change Biology, 13(12): 2592–2604.
|
Lüning K. 1984. Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland (North Sea) as an example. Helgoläander Meeresuntersuchungen, 38: 305–17.
|
Magill C L, Maggs C A, Johnson M P, et al. 2019. Sustainable Harvesting of the Ecosystem Engineer Corallina officinalis for Biomaterials. Frontiers in Marine Science, 6: 285, doi: 10.3389/fmars.2019.00285
|
Meteo. 2021. Ministry of the Environment, Territory and Infrastructures - Xunta de Galicia, accessed 30 March 2021, http://www2.meteogalicia.gal/galego/observacion/plataformas/platHistorico.asp?Nest=15100&red=102
|
Mineur F, Arenas F, Assis J, et al. 2015. European seaweeds under pressure: Consequences for communities and ecosystem functioning. Journal of Sea Research, 98: 91–108, doi: 10.1016/j.seares.2014.11.004
|
Mota C F, Engelen A H, Serrao E A, et al. 2018. Differentiation in fitness-related traits in response to elevated temperatures between leading and trailing edge populations of marine macrophytes. PloS One, 13(9): 0203666
|
Ntuli N N, Nicastro K R, Zardi G I, et al. 2020. Rejection of the genetic implications of the “Abundant Centre Hypothesis” in marine mussels. Scientific Reports, 10: 604, doi: 10.1038/s41598-020-57474-0
|
Oliver E C, Donat M G, Burrows M T, et al. 2018. Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1): 1324, doi: 10.1038/s41467-018-03732-9
|
Padilla-Gamino J L, Carpenter R C. 2007. Seasonal acclimatization of Asparagopsis taxiformis (Rhodophyta) from different biogeographic regions. Limnology and Oceanography, 52: 833–42, doi: 10.4319/lo.2007.52.2.0833
|
Ragazzola F, Foster L C, Form A U, et al. 2013. Phenotypic plasticity of coralline algae in a high CO2 world. Ecology and Evolution, 3(10): 3436–3446, doi: 10.1002/ece3.723
|
Rendina F, Bouchet P J, Appolloni L, et al. 2019. Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events. Marine Environmental Research, 150: 104764, doi: 10.1016/j.marenvres.2019.104764
|
Saada G, Nicastro K R, Jacinto R, et al. 2016. Taking the heat: distinct vulnerability to thermal stress of central and threatened peripheral lineages of a marine macroalga. Diversity and Distributions, 22(10): 1060–1068, doi: 10.1111/ddi.12474
|
Sagarin R D, Gaines S D. 2002. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule?. Ecology Letters, 5(1): 137–147
|
Sexton J P, McIntyre P J, Angert A L, et al. 2009. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution and Systematics, 40: 415–436
|
Smale D A, Wernberg T, Oliver E C J, et al. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4): 306–312, doi: 10.1038/s41558-019-0412-1
|
Steller D L, Riosmena-Rodríguez R, Foster M S, et al. 2003. Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquatic conservation: Marine and Freshwater Ecosystems, 13(S1): S5–S20, doi: 10.1002/aqc.564
|
Straub S C, Wernberg T, Thomsen M S, et al. 2019. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Frontiers in Marine Science, 6: 763, doi: 10.3389/fmars.2019.00763
|
Tavares A I, Nicastro K R, Kolzenburg R, et al. 2018. Isolation and characterization of nine microsatellite markers for the red alga Corallina officinalis. Molecular Biology Reports, 45(6): 2791–2794
|
Underwood A J. 1997. Experiments in Ecology. Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press: Cambridge
|
Whittaker R H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs, 26: 2–80
|
Williamson C J, Brodie J, Goss B, et al. 2014. Corallina and Ellisolandia (Corallinales, Rhodophyta) photophysiology over daylight tidal emersion: interactions with irradiance, temperature and carbonate chemistry. Marine Biology, 161: 2051–2068, doi: 10.1007/s00227-014-2485-8
|
Williamson C J, Perkins R, Yallop M L, et al. 2018. Photoacclimation and photoregulation strategies of Corallina (Corallinales, Rhodophyta) across the NE Atlantic. European Journal of Phycology, 53(3): 290–306, doi: 10.1080/09670262.2018.1442586
|
Yang A, Dick C W, Yao X, et al. 2016. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense. Scientific Reports, 6(1): 25632, doi: 10.1038/srep25632
|
Zardi G I, Nicastro K R, Serrão E A, et al. 2015. Closer to the rear edge: Ecology and genetic diversity down the core-edge gradient of a marine macroalga. Ecosphere, 6(2): 1–25
|
Zuur A F, Ieno E N, Smith G M. 2007. Analysing Ecological Data. Vol 680. New York: Springer
|