Volume 43 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Zhigang Zhao, Wu Tang, Shixiang Liu, Huafeng Tang, Pujun Wang, Zhiwen Tian. U-Pb zircon ages and petrogeochemistry and tectonic implications of gabbro and granite in southwest Lahad Datu area of Sabah, Malaysia[J]. Acta Oceanologica Sinica, 2024, 43(2): 94-110. doi: 10.1007/s13131-023-2218-2
Citation: Zhigang Zhao, Wu Tang, Shixiang Liu, Huafeng Tang, Pujun Wang, Zhiwen Tian. U-Pb zircon ages and petrogeochemistry and tectonic implications of gabbro and granite in southwest Lahad Datu area of Sabah, Malaysia[J]. Acta Oceanologica Sinica, 2024, 43(2): 94-110. doi: 10.1007/s13131-023-2218-2

U-Pb zircon ages and petrogeochemistry and tectonic implications of gabbro and granite in southwest Lahad Datu area of Sabah, Malaysia

doi: 10.1007/s13131-023-2218-2
Funds:  The National Science and Technology Major Project under contract No. 2016ZX05026-004; the National Key R&D Program of China under contract No. 2019YFC0605402; the National Natural Science Foundation of China under contract No. 41790453.
More Information
  • Corresponding author: E-mail: tianzw21@mails.jlu.edu.cn
  • Received Date: 2023-01-23
  • Accepted Date: 2023-05-05
  • Available Online: 2024-03-18
  • Publish Date: 2024-02-01
  • The southwest Lahad Datu felsic rocks were previously thought to have formed in the late Triassic as part of the microcontinental crystalline basement. Based on U-Pb ages, geochemistry, and the Hf isotopes of zircon from the southeastern Sabah gabbro and granite, in this study, the tectonic properties of the Sabah area during the Triassic were investigated. The weighted average U-Pb zircon ages of the gabbro and granite samples were determined to be (230.9 ± 2.5)Ma and (207.1 ± 3.3)Ma, respectively. The granite had SiO2 contents of 66.54%–79.47%, low TiO2 contents of 0.08%–0.3%, Al2O3 contents of 10.97%–16.22%, Na2O contents of 5.91%–6.39%, and low K2O contents of 0.15%–0.65%. The chondrite-normalized rare earth element (REE) patterns exhibit light REE enrichment, with right-sloping curves. The primitive mantle-normalized trace element spider diagrams exhibit Th, U, La, Sr, and Zr enrichment and Nb, Ta, P and Ti depletions, i.e., the geochemical characteristics of typical island arc igneous rocks. The tectonic discriminant diagram indicates that the granite is a volcanic arc granite. The Hf isotopic analysis of gabbro zircon revealed that the zircons have εHf(t) values of 12.08–16.24 (mean of 14.32) and two-stage model ages (tDM2) of 223–491 Ma (mean of 347 Ma). This indicates that the diagenetic magma of the gabbro was mainly derived from melting of newly formed crustal materials. The ophiolite in southeast Sabah has existed since the early Late Triassic. The crystalline basement granite in southeastern Sabah was emplaced lasted from late Triassic to early Cretaceous. Based on previous studies and global plate reconstruction models, it is speculated that the southeastern Sabah granite may have been formed in an island arc setting, i.e., where the oceanic crust of the Paleo-Tethys Ocean collided with the oceanic crust of the Panthalassa Ocean.
  • loading
  • Advokaat E L, Bongers M L M, Rudyawan A, et al. 2018. Early cretaceous origin of the Woyla Arc (Sumatra, Indonesia) on the Australian plate. Earth and Planetary Science Letters, 498: 348–361, doi: 10.1016/j.jpgl.2018.07.001
    Arias C. 2008. Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys oceans. Gondwana Research, 14(3): 306–315, doi: 10.1016/j.gr.2008.03.004
    Asis J, Jasin B. 2012. Aptian to Turonian Radiolaria from the Darvel Bay ophiolite complex, Kunak, Sabah. Bulletin of the Geological Society of Malaysia, 58: 89–96, doi: 10.7186/bgsm58201213
    Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243–258, doi: 10.1016/s0012-821x(97)00040-x
    Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260, doi: 10.1007/s004100050278
    Bol A J, Van Hoorn B. 1980. Structural styles in western Sabah offshore. Bulletin of the Geological Society of Malaysia, 12: 1–16, doi: 10.7186/bgsm12198001
    Breitfeld H T, Hall R, Galin T, et al. 2017. A Triassic to cretaceous Sundaland-Pacific subduction margin in west Sarawak, Borneo. Tectonophysics, 694: 35–56, doi: 10.1016/j.tecto.2016.11.034
    Burton-Johnson A, Macpherson C G, Millar I L, et al. 2020. A Triassic to Jurassic arc in north Borneo: geochronology, geochemistry, and genesis of the Segama Valley felsic intrusions and the Sabah ophiolite. Gondwana Research, 84: 229–244, doi: 10.1016/j.gr.2020.03.006
    Cao Guangyue, Li Xiang, Xie Guogang, et al. 2022. Petrogenesis of late Permian to Middle Triassic magmatic rocks on northern Hainan Island, South China: Implications for crust–mantle interaction and the tectonic evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 234: 105238, doi: 10.1016/j.jseaes.2022.105238
    Condie K C. 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 79(3–4): 491–504,doi: 10.1016/j.lithos.2004.09.014
    Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123(3-4): 387–411, doi: 10.1130/B30446.1
    Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437, doi: 10.1007/s00410-007-0201-0
    Fuller M, Ali J R, Moss S J, et al. 1999. Paleomagnetism of borneo. Journal of Asian Earth Sciences, 17(1-2): 3–24, doi: 10.1016/S0743-9547(98)00057-9
    Gan Chengshi, Qian Xin, Wang Yuejun, et al. 2022. Late cretaceous Granitoids along the northern Kuching zone: implications for the Paleo-Pacific subduction in Borneo. Lithosphere, 2022(1): 3310613, doi: 10.2113/2022/3310613
    Gass I G. 1982. Ophiolites. Scientific American, 247(2): 122–131, doi: 10.1038/scientificamerican0882-122
    Graves J E, Hutchison C S, Bergman S C, et al. 2000. Age and MORB geochemistry of the Sabah ophiolite basement. Bulletin of the Geological Society of Malaysia, 44: 151–158, doi: 10.7186/bgsm44200019
    Grieco G, Ferrario A, Von Quadt A, et al. 2001. The zircon-bearing Chromitites of the Phlogopite peridotite of Finero (Ivrea Zone, Southern Alps): evidence and geochronology of a Metasomatized mantle slab. Journal of Petrology, 42(1): 89–101, doi: 10.1093/petrology/42.1.89
    Griffin W L, Graham S, O’Reilly S Y, et al. 2004. Lithosphere evolution beneath the Kaapvaal Craton: Re-Os systematics of sulfides in mantle-derived peridotites. Chemical Geology, 208(1-4): 89–118, doi: 10.1016/j.chemgeo.2004.04.007
    Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147, doi: 10.1016/s0016-7037(99)00343-9
    Griffin W L, Wang Xiang, Jackson S E, et al. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237–269, doi: 10.1016/S0024-4937(02)00082-8
    Hall R. 1996. Reconstructing Cenozoic SE Asia. Tectonic Evolution of Southeast Asia, 126: 153–184.
    Hall R. 2011. Australia–SE Asia collision: plate tectonics and crustal flow. Geological Society, London, Special Publications, 355(1): 75–109,doi: 10.1144/SP355.5
    Hall R. 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571: 1–41,doi: 10.1016/j.tecto.2012.04.021
    Hall R. 2013. Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Sciences, 76: 399–411, doi: 10.1016/j.jseaes.2013.04.010
    Hall R, Breitfeld H T. 2017. Nature and demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia, 63: 61–76, doi: 10.7186/bgsm63201703
    Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67–81,doi: 10.1144/GSL.SP.1986.019.01.04
    Hennig J, Breitfeld H T, Hall R, et al. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292–310, doi: 10.1016/j.gr.2017.05.001
    Hermann J, Rubatto D, Trommsdorff V. 2006. Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps). Mineralogy and Petrology, 88(1-2): 181–206, doi: 10.1007/s00710-006-0155-3
    Holloway N H. 1981. The North Palawan block, Philippines: its relation to the Asian mainland and its role in the evolution of the South China Sea. Bulletin of the Geological Society of Malaysia, 14: 19–58, doi: 10.7186/bgsm14198102
    Holt R A. 1998. The gravity field of sundaland: acquisition, assessment and interpretation [dissertation]. London: University of London.
    Huang Baochun, Yan Yonggang, Piper J D A, et al. 2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 186: 8–36, doi: 10.1016/j.earscirev.2018.02.004
    Hutchison C S. 1975. Ophiolite in southeast Asia. GSA Bulletin, 86(6): 797–806., doi: 10.1130/0016-7606(1975)86<797:OISA>2.0.CO;2
    Hutchison C S. 1978. Ophiolite metamorphism in Northeast Borneo. Lithos, 11(3): 195–208., doi: 10.1016/0024-4937(78)90020-8
    Hutchison C S. 1989. Geological Evolution of South-east Asia. Oxford: Clarendon Press, 1–368.
    Hutchison C S. 1996. The ‘Rajang accretionary prism’ and ‘Lupar Line’ problem of Borneo. Geological Society, London, Special Publications, 106(1): 247–261, doi: 10.1144/GSL.SP.1996.106.01.16
    Hutchison C S. 2010. Oroclines and paleomagnetism in Borneo and South-East Asia. Tectonophysics, 496(1-4): 53–67, doi: 10.1016/j.tecto.2010.10.008
    Imai A, Ozawa K. 1991. Tectonic implications of the hydrated garnet peridotites near Mt Kinabalu, Sabah, East Malaysia. Journal of Southeast Asian Earth Sciences, 6(3-4): 431–445, doi: 10.1016/0743-9547(91)90086-d
    Jasin B. 1992. Significance of radiolarian cherts from the Chert-Spilite Formation, Telupid, Sabah. Bulletin of the Geological Society of Malaysia, 31: 67–83., doi: 10.7186/bgsm31199205
    Jasin B. 2000. Geological significance of radiolarian chert in Sabah. Bulletin of the Geological Society of Malaysia, 44: 35–43., doi: 10.7186/bgsm44200005
    Jasin B, Tahir S, Samsuddin A R. 1985. Lower cretaceous radiolaria from the chert-spilite formation, kudat, Sabah. Warta Geologi, 11(4): 161–162.
    Jasin B, Tongkul F. 2013. Cretaceous radiolarians from Baliojong ophiolite sequence, Sabah, Malaysia. Journal of Asian Earth Sciences, 76: 258–265, doi: 10.1016/j.jseaes.2012.10.038
    Katayama I, Muko A, Iizuka T, et al. 2003. Dating of zircon from Ti-clinohumite-bearing garnet peridotite: implication for timing of mantle metasomatism. Geology, 31(8): 713–716, doi: 10.1130/G19525.1
    Kirk H J C. 1968. The Igneous Rocks of Sarawak and Sabah. Washington: U. S. Government Printing Office.
    Leong K M. 1971. Peridotite-gabbro problems, with special reference to the Segama Valley and Darvel Bay area, Sabah, East Malaysia. Geological Society of Malaysia, Newsletter, 28: 4–13.
    Leong K M. 1974. The Geology and Mineral Resources of the Upper Segama Valley and Darvel Bay Area, Sabah, Malaysia. Washington: U. S. Government Printing Office, 354.
    Leong K M. 1977. New ages from radiolarian cherts of the Chert-Spilite Formation, Sabah. Bulletin of the Geological Society of Malaysia, 8: 109–111, doi: 10.7186/bgsm08197707
    Leong K M. 1998. Sabah crystalline basement: "Spurious" radiometric ages? Continental? Warta Geologi, 24: 5–8.
    Leong K M. 2017. Review of 50-years (1966-2016) debate on age of Sabah crystalline basement granitic rocks: are the granitic rocks in upper Segama Sabah fragments of supercontinent pangaea? Warta Geologi, 43: 223–224.
    Li Haiyong, Chen Renxu, Zheng Yongfei, et al. 2016. The crust-mantle interaction in continental subduction channels: Zircon evidence from orogenic peridotite in the Sulu orogen. Journal of Geophysical Research:Solid Earth, 121(2): 687–712, doi: 10.1002/2015jb012231
    Li Cai, Zhai Qingguo, Dong Yongsheng, et al. 2007. Lungmu Co-Shanghu plate suture in the Qinghai-Tibet Plateau and records of the evolution of the Paleo-Tethys Ocean in the Qiangtang area, Tibet, China. Geological Bulletin of China (in Chinese), 26(1): 13–21
    Liu Han, Wang Baodi, Chen Li, et al. 2015. Early carboniferous subduction of Lungmu Co-Shuanghu Paleo-Tethys Ocean: Evidence from island arc volcanic rocks in Riwanchaka, Central Qiangtang. Geological Bulletin of China (in Chinese), 34(2-3): 274–282
    Ludwig K R. 2003. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley: Kenneth R. Ludwig, 4: 70.
    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635–643, doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tectono-magmatic activities in South China: retrospect and prospect. Science China Earth Sciences, 57(12): 2853–2877, doi: 10.1007/s11430-014-5006-1
    Matthews K J, Maloney K T, Zahirovic S, et al. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146: 226–250, doi: 10.1016/j.gloplacha.2016.10.002
    Metcalfe I. 1998. Palaeozoic and Mesozoic geological evolution of the SE Asian region: Multidisciplinary constraints and implications for biogeography. In: Hall R, Holloway J D, eds. Biogeography and Geological Evolution of SE Asia. Leiden: Backhuys Publishers, 25–41
    Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1): 3–21, doi: 10.1016/j.gr.2010.02.016
    Metcalfe I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33, doi: 10.1016/j.jseaes.2012.12.020
    Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87–130, doi: 10.1016/j.gr.2021.01.012
    Mi Lijun, Tang Xiaoyin, Yang Haizhang, et al. 2023. Zircon U-Pb geochronology, Hf isotopes, and geochemistry constraints on the age and tectonic affinity of the basement granitoids from the Qiongdongnan Basin, northern South China Sea. Acta Oceanologica Sinica, 42(3): 19–30, doi: 10.1007/s13131-022-2078-1
    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215–224, doi: 10.1016/0012-8252(94)90029-9
    Milsom J, Holt R, Hutchison C S, et al. 2001. Discussion of a Miocene collisional belt in north Borneo: uplift mechanism and isostatic adjustment quantified by thermochronology: Journal, Vol. 157, 2000, 783–793. Journal of the Geological Society, 158(2): 396–400, doi: 10.1144/jgs.158.2.396
    Moores E M. 1982. Origin and emplacement of ophiolites. Reviews of Geophysics, 20(4): 735–760, doi: 10.1029/RG020i004p00735
    Oliver G, Zaw K, Hotson M, et al. 2014. U–Pb zircon geochronology of Early Permian to Late Triassic rocks from Singapore and Johor: a plate tectonic reinterpretation. Gondwana Research, 26(1): 132–143, doi: 10.1016/j.gr.2013.03.019
    Omang S A K. 1993. Petrology, geochemistry and structural geology of the Darvel Bay ophiolite, Sabah [dissertation]. London: University of London.
    Omang S A K, Barber A J. 1996. Origin and tectonic significance of the metamorphic rocks associated with the Darvel Bay Ophiolite, Sabah, Malaysia. Geological Society, London, Special Publication, 106: 263–279, doi: 10.1144/gsl.sp.1996.106.01.17
    Omang S A K, Tahir S H. 1995. Cretaceous and Neogene lavas of Sabah-origin and tectonic significance. Bulletin of the Geological Society of Malaysia, 38: 21–30, doi: 10.7186/bgsm38199503
    Parkinson C D, Miyazaki K, Wakita K, et al. 1998. An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. Island Arc, 7(1-2): 184–200., doi: 10.1046/j.1440-1738.1998.00184.x
    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290–300., doi: 10.1016/0012-821X(73)90129-5
    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983, doi: 10.1093/petrology/25.4.956
    Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285, doi: 10.1146/annurev.ea.23.050195.001343
    Rangin C, Bellon H, Benard F, et al. 1990. Neogene arc-continent collision in Sabah, Northern Borneo (Malaysia). Tectonophysics, 183(1-4): 305–319, doi: 10.1016/0040-1951(90)90423-6
    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247–263, doi: 10.1016/0024-4937(89)90028-5
    Robinson P T, Trumbull R B, Schmitt A, et al. 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27(2): 486–506, doi: 10.1016/j.gr.2014.06.003
    Schlüter H U, Hinz K, Block M. 1996. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1-2): 39–78., doi: 10.1016/0025-3227(95)00137-9
    Schulz B, Klemd R, Brätz H. 2006. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochimica et Cosmochimica Acta, 70(3): 697–710, doi: 10.1016/j.gca.2005.10.001
    Setiawan N I, Osanai Y, Nakano N, et al. 2013. Late Triassic metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to sedimentary provenance in the Sundaland. Berita Sedimentologi, 28(1): 5–13.
    Setiawan N I, Osanai Y, Nakano N, et al. 2015. Metamorphic evolution of garnet-bearing epidote-barroisite schist from the Meratus Complex in South Kalimantan, Indonesia. Indonesian Journal on Geoscience, 2(3): 139–156, doi: 10.17014/ijog.2.3.139-156
    Sevastjanova I, Hall R, Rittner M, et al. 2016. Myanmar and Asia united, Australia left behind long ago. Gondwana Research, 32: 24–40, doi: 10.1016/j.gr.2015.02.001
    Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101–118., doi: 10.1016/0012-821X(82)90120-0
    Smith D, Griffin W L. 2005. Garnetite xenoliths and mantle-water interactions below the Colorado Plateau, Southwestern United States. Journal of Petrology, 46(9): 1901–1924, doi: 10.1093/petrology/egi042
    Stern R J. 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3-4): 275–292., doi: 10.1016/S0012-821X(04)00498-4
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313–345, doi: 10.1144/gsl.sp.1989.042.01.19
    Swauger D A, Bergman S C, Graves J E, et al. 1995. Tertiary stratigraphic, tectonic, and thermal history of Sabah, Malaysia: results of a 10 day reconnaissance field study and laboratory analyses. ARCO International Oil and Gas Company, TRS 95-0036, 1–61 (unpublished report).
    Thuy N T B, Satir M, Siebel W, et al. 2004. Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences, 23(4): 467–482, doi: 10.1016/j.jseaes.2003.06.001
    Tian Zhiwen, Tang Wu, Wang Pujun, et al. 2021b. Tectonic evolution and key geological issues of the Proto-South China Sea. Acta Geologica Sinica (English Edition), 95(1): 77–90, doi: 10.1111/1755-6724.14644
    Tian Zhiwen, Tang Huafeng, Zhao Zhigang, et al. 2021a. U-Pb dating of sandstone detrital zircons from Chert-Spilite Formation in Sabah, Malaysia and its geological significance. Global Geology (in Chinese), 40(1): 52–64, doi: 10.3969/j.issn.1004-5589.2021.01.006
    Tjia H D. 1988. Accretion tectonics in Sabah: Kinabalu suture and East Sabah accreted terrane. Bulletin of the Geological Society of Malaysia, 22: 237–251., doi: 10.7186/bgsm22198812
    Tongkul F. 1990. Structural style and tectonics of western and northern Sabah. Bulletin of the Geological Society of Malaysia, 27: 227–239., doi: 10.7186/bgsm27199011
    Tongkul F. 1991. Tectonic evolution of Sabah, Malaysia. Journal of Southeast Asian Earth Sciences, 6(3-4): 395–405, doi: 10.1016/0743-9547(91)90084-b
    Tongkul F. 1994. The geology of Northern Sabah, Malaysia: its relationship to the opening of the South China Sea Basin. Tectonophysics, 235(1-2): 131–147, doi: 10.1016/0040-1951(94)90021-3
    Wakita K, Miyazaki K, Zulkarnain I, et al. 1998. Tectonic implications of new age data for the Meratus complex of South Kalimantan, Indonesia. Island Arc, 7(1-2): 202–222, doi: 10.1046/j.1440-1738.1998.00163.x
    Wang Pengcheng, Li Sanzhong, Guo Lingli, et al. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geological Journal, 51(S1): 464–489, doi: 10.1002/gj.2835
    Wang Yuejun, Liu Zi, Murtadha S, et al. 2022b. Jurassic subduction of the Paleo-Pacific plate in Southeast Asia: new insights from the igneous and sedimentary rocks in West Borneo. Journal of Asian Earth Sciences, 232: 105111, doi: 10.1016/j.jseaes.2022.105111
    Wang Yuejun, Qian Xin, Asis J B, et al. 2023. “Where, when and why” for the arc-trench gap from Mesozoic Paleo-Pacific subduction zone: Sabah Triassic-Cretaceous igneous records in East Borneo. Gondwana Research, 117: 117–138, doi: 10.1016/j.gr2023.01.008
    Wang Yuejun, Qian Xin, Cawood P A, et al. 2022a. Cretaceous Tethyan subduction in SE Borneo: Geochronological and geochemical constraints from the igneous rocks in the Meratus Complex. Journal of Asian Earth Sciences, 226: 105084, doi: 10.1016/j.jseaes.2022.105084
    Wang Yuejun, Zhang Aimei, Qian Xin, et al. 2021. Cretaceous Kuching accretionary orogenesis in Malaysia Sarawak: Geochronological and geochemical constraints from mafic and sedimentary rocks. Lithos, 400–401: 106425, doi: 10.1016/j.lithos.2021.106425
    Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841–844, doi: 10.1126/science.1110873
    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419, doi: 10.1007/BF00402202
    Xu Junjie. 2019. The tectono-stratigraphic framework and geodynamics of the Zengmu Basin, southern South China Sea (in Chinese)[dissertation]. Wuhan: China University of Geosciences.
    Xu Changhai, Shi Hesheng, Barnes C G, et al. 2016. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58(1): 71–94, doi: 10.1080/00206814.2015.1056256
    Yamamoto S, Komiya T, Yamamoto H, et al. 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc, 22(1): 89–103, doi: 10.1111/iar.12011
    Yan Quanshu, Metcalfe I, Shi Xuefa. 2017. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution. Gondwana Research, 49: 333–349, doi: 10.1016/j.gr.2017.06.007
    Yan Quanshu, Shi Xuefa, Castillo P R. 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: a petrologic perspective. Journal of Asian Earth Sciences, 85: 178–201, doi: 10.1016/j.jseaes.2014.02.005
    Yang Jianghai, Cawood P A, Du Yuansheng, et al. 2012. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sedimentary Geology, 261–262: 120–131, doi: 10.1016/j.sedgeo.2012.03.018.
    Young A, Flament N, Maloney K, et al. 2019. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers, 10(3): 989–1013, doi: 10.1016/j.gsf.2018.05.011
    Yuwono Y S, Priyomarsono S, Maury R C, et al. 1988. Petrology of the Cretaceous magmatic rocks from Meratus Range, southeast Kalimantan. Journal of Southeast Asian Earth Sciences, 2(1): 15–22, doi: 10.1016/0743-9547(88)90017-7
    Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1): 227–273, doi: 10.5194/se-5-227-2014
    Zhang Aimei, Asis J B, Fang Xudong, et al. 2022. Late Cretaceous fore–arc spreading in the northern Kuching Zone of West Borneo, SE Asia: Constraints from the Pakong Mafic Complex. Journal of Asian Earth Sciences, 230: 105189, doi: 10.1016/j.jseaes.2022.105189
    Zheng Han, Sun Xiaomeng, Wang Pujun, et al. 2019. Mesozoic tectonic evolution of the Proto-South China Sea: a perspective from radiolarian paleobiogeography. Journal of Asian Earth Sciences, 179: 37–55, doi: 10.1016/j.jseaes.2019.04.009
    Zhou Yang, Yan Yi, Liu Hailing, et al. 2020. U-Pb isotope geochronology of Syntectonic granites from Hainan Island, South China: constraints on tectonic evolution of the eastern Paleo-Tethys Ocean. Journal of Ocean University of China, 19(6): 1315–1330, doi: 10.1007/s11802-020-4352-1
    Zi Jianwei, Cawood P A, Fan Weiming, et al. 2012. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 144–145: 145–160, doi: 10.1016/j.lithos.2012.04.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (84) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return