Volume 42 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Feng Cai, Hang Yin, Hongshuai Qi, Jixiang Zheng, Yuwu Jiang, Zhubin Cao, Yanyu He. Using video imagery to reconstruct the 3D intertidal terrain along a beach with multiple cusps[J]. Acta Oceanologica Sinica, 2023, 42(7): 1-9. doi: 10.1007/s13131-023-2174-x
Citation: Feng Cai, Hang Yin, Hongshuai Qi, Jixiang Zheng, Yuwu Jiang, Zhubin Cao, Yanyu He. Using video imagery to reconstruct the 3D intertidal terrain along a beach with multiple cusps[J]. Acta Oceanologica Sinica, 2023, 42(7): 1-9. doi: 10.1007/s13131-023-2174-x

Using video imagery to reconstruct the 3D intertidal terrain along a beach with multiple cusps

doi: 10.1007/s13131-023-2174-x
Funds:  The National Key Research and Development Program of China under contract No. 2022YFC3106100; the Key Program of National Natural Science Foundation of China under contract No. 41930538.
More Information
  • Corresponding author: E-mail: qihongshuai@tio.org.cn
  • Received Date: 2022-11-21
  • Accepted Date: 2023-02-10
  • Available Online: 2023-07-11
  • Publish Date: 2023-07-25
  • A high-frequency, high-resolution shore-based video monitoring system (VMS) was installed on a macrotidal (tidal amplitude >4 m) beach with multiple cusps along the Quanzhou coast, China. Herein, we propose a video imagery-based method that is coupled with waterline and water level observations to reconstruct the terrain of the intertidal zone over one tidal cycle. Furthermore, the beach cusp system (BCS) was precisely processed and embedded into the digital elevation model (DEM) to more effectively express the microrelief and detailed characteristics of the intertidal zone. During a field experiment conducted in January 2022, the reconstructed DEM was deemed satisfactory. The DEM was verified by RTK-GPS and had an average vertical root mean square error along corresponding RTK-GPS-derived intertidal profiles and corresponding BCS points of 0.134 m and 0.065 m, respectively. The results suggest that VMSs are an effective tool for investigating coastal geomorphic processes.
  • loading
  • Aarninkhof S G J, Turner I L, Dronkers T D T, et al. 2003. A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4): 275–289. doi: 10.1016/S0378-3839(03)00064-4
    Alexander P S, Holman R A. 2004. Quantification of nearshore morphology based on video imaging. Marine Geology, 208(1): 101–111. doi: 10.1016/j.margeo.2004.04.017
    Ali S, Darsan J, Wilson M. 2017. Cusp morphodynamics in a micro-tidal exposed beach. Journal of Coastal Conservation, 21(6): 777–788. doi: 10.1007/s11852-017-0536-2
    Almar R, Blenkinsopp C, Almeida L P, et al. 2019. Intertidal beach profile estimation from reflected wave measurements. Coastal Engineering, 151: 58–63. doi: 10.1016/j.coastaleng.2019.05.001
    Almar R, Coco G, Bryan K R, et al. 2008. Video observations of beach cusp morphodynamics. Marine Geology, 254(3–4): 216–223
    Andriolo U, Almeida L P, Almar R. 2018. Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography. Coastal Engineering, 140: 232–239. doi: 10.1016/j.coastaleng.2018.07.009
    Atkinson A L, Power H E, Moura T, et al. 2017. Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast. Coastal Engineering, 119: 15–31. doi: 10.1016/j.coastaleng.2016.10.001
    Bagot P, Huybrechts N, Sergent P. 2021. Satellite-derived topography and morphological evolution around authie macrotidal estuary (France). Journal of Marine Science and Engineering, 9(12): 1354. doi: 10.3390/jmse9121354
    Cai Feng, Cao Chao, Qi Hongshuai, et al. 2022. Rapid migration of mainland China’s coastal erosion vulnerability due to anthropogenic changes. Journal of Environmental Management, 319: 115632. doi: 10.1016/j.jenvman.2022.115632
    Cai Feng, Cao Huimei, Su Xianze, et al. 2007. Analysis on morphodynamics of sandy beaches in South China. Journal of Coastal Research, 23(1): 236–246
    Ciriano Y, Coco G, Bryan K R, et al. 2005. Field observations of swash zone infragravity motions and beach cusp evolution. Journal of Geophysical Research: Oceans, 110(C2): C02018
    Coco G, Huntley D A, O’Hare T J. 2000. Investigation of a self-organization model for beach cusp formation and development. Journal of Geophysical Research: Oceans, 105(C9): 21991–22002. doi: 10.1029/2000JC900095
    Coco G, O’Hare T J, Huntley D A. 1999. Beach cusps: a comparison of data and theories for their formation. Journal of Coastal Research, 15(3): 741–749
    da Silva P G, Coco G, Garnier R, et al. 2020. On the prediction of runup, setup and swash on beaches. Earth-Science Reviews, 204: 103148. doi: 10.1016/j.earscirev.2020.103148
    Davies J L. 1964. A morphogenic approach to world shorelines. Zeitschrift für Geomorphologie, 8(5): 127–142
    Guest T B, Hay A E. 2019. Timescales of beach cusp evolution on a steep, megatidal, mixed sand-gravel beach. Marine Geology, 416: 105984. doi: 10.1016/j.margeo.2019.105984
    Holland K T, Holman R A, Lippmann T C, et al. 1997. Practical use of video imagery in nearshore oceanographic field studies. IEEE Journal of Oceanic Engineering, 22(1): 81–92. doi: 10.1109/48.557542
    Holland K T, Raubenheimer B, Guza R T, et al. 1995. Runup kinematics on a natural beach. Journal of Geophysical Research: Oceans, 100(C3): 4985–4993. doi: 10.1029/94JC02664
    Holman R A, Stanley J. 2007. The history and technical capabilities of Argus. Coastal Engineering, 54(6–7): 477–491
    Hutchinson M F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106(3–4): 211–232
    Liu Yongxue, Li Manchun, Zhou Minxi, et al. 2013. Quantitative analysis of the waterline method for topographical mapping of tidal flats: a case study in the dongsha sandbank, China. Remote Sensing, 5(11): 6138–6158. doi: 10.3390/rs5116138
    Lopes V, Baptista P, Pais-Barbosa J, et al. 2013. DGPS based methods to obtain beach cusp dimensions. Journal of Coastal Research, 65(sp1): 541–546
    Mason D C, Davenport I J, Robinson G J H, et al. 1995. Construction of an inter-tidal digital elevation model by the ‘Water-Line’ Method. Geophysical Research Letters, 22(23): 3187–3190. doi: 10.1029/95GL03168
    Masselink G, Hegge B J, Pattiaratchi C B. 1997. Beach cusp morphodynamics. Earth Surface Processes and Landforms, 22(12): 1139–1155. doi: 10.1002/(SICI)1096-9837(199712)22:12<1139::AID-ESP766>3.0.CO;2-1
    Montes J, Simarro G, Benavente J, et al. 2018. Morphodynamics assessment by means of mesoforms and video-monitoring in a dissipative beach. Geosciences, 8(12): 448. doi: 10.3390/geosciences8120448
    Nuyts S, Li Zili, Hickey K, et al. 2021. Field observations of a multilevel beach cusp system and their swash zone dynamics. Geosciences, 11(4): 148. doi: 10.3390/geosciences11040148
    Nuyts S, Murphy J, Li Zili, et al. 2020. A methodology to assess the morphological change of a multilevel beach cusp system and their hydrodynamics: case study of Long Strand, Ireland. Journal of Coastal Research, 95(S1): 593–598
    Osorio A F, Medina R, Gonzalez M. 2012. An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Computers & Geosciences, 46: 196–207
    Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62–66
    Palmsten M L, Brodie K L. 2022. The coastal imaging research network (CIRN). Remote Sensing, 14(3): 453. doi: 10.3390/rs14030453
    Pitman S J, Hart D E, Katurji M H. 2019. Application of UAV techniques to expand beach research possibilities: a case study of coarse clastic beach cusps. Continental Shelf Research, 184: 44–53. doi: 10.1016/j.csr.2019.07.008
    Plant N G, Holman R A. 1997. Intertidal beach profile estimation using video images. Marine Geology, 140(1–2): 1–24
    Qi Hongshuai, Cai Feng, Lei Gang, et al. 2010. The response of three main beach types to tropical storms in South China. Marine Geology, 275(1–4): 244–254
    Salameh E, Frappart F, Almar R, et al. 2019. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: a review. Remote Sensing, 11(19): 2212. doi: 10.3390/rs11192212
    Sánchez-García E, Balaguer-Beser A, Pardo-Pascual J E. 2017. C-Pro: a coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128: 255–273. doi: 10.1016/j.isprsjprs.2017.03.023
    Simarro G, Calvete D, Souto P, et al. 2020. Camera calibration for coastal monitoring using available snapshot images. Remote Sensing, 12(11): 1840. doi: 10.3390/rs12111840
    Soloy A, Turki I, Lecoq N, et al. 2021. A fully automated method for monitoring the intertidal topography using Video Monitoring Systems. Coastal Engineering, 167: 103894. doi: 10.1016/j.coastaleng.2021.103894
    Tian Ye, Yin Ping, Jia Yonggang, et al. 2020. Response of beach characteristics to typhoon “Yagi”: evidence from Argus video images and on-site measurement. Marine Geology & Quaternary Geology (in Chinese), 40(5): 201–210
    Uunk L, Wijnberg K M, Morelissen R. 2010. Automated mapping of the intertidal beach bathymetry from video images. Coastal Engineering, 57(4): 461–469. doi: 10.1016/j.coastaleng.2009.12.002
    van Gaalen J F, Kruse S E, Coco G, et al. 2011. Observations of beach cusp evolution at Melbourne Beach, Florida, USA. Geomorphology, 129(1–2): 131–140
    Van Koningsveld M, Davidson M, Huntley D, et al. 2007. A critical review of the CoastView project: recent and future developments in coastal management video systems. Coastal Engineering, 54(6–7): 567–576
    Vousdoukas M I. 2012. Erosion/accretion patterns and multiple beach cusp systems on a meso-tidal, steeply-sloping beach. Geomorphology, 141–142: 34–46
    Vousdoukas M I, Ferreira P M, Almeida L P, et al. 2011. Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal. Ocean Dynamics, 61(10): 1521–1540. doi: 10.1007/s10236-011-0440-5
    Wang Chun, Tang Guoan, Liu Xuejun, et al. 2009. The model of terrain features preserved in grid DEM. Geomatics and Information Science of Wuhan University (in Chinese), 34(10): 1149–1154
    Zhang Zhengyou. 1999. Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra: IEEE
    Zhang Dong, Zhang Huiming, Zhou Yong, et al. 2022. An evaluation of wind turbine-induced topographic change in the offshore intertidal sandbank using remote sensing-constructed digital elevation model data. Remote Sensing, 14(9): 2255. doi: 10.3390/rs14092255
    Zhou Yong, Zhang Dong, Deng Huili, et al. 2021. The enhanced construction method for intertidal terrain of offshore sandbanks by remote sensing. Haiyang Xuebao (in Chinese), 43(12): 133–143
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (380) PDF downloads(38) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint