Volume 42 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Xuejia He, Zhang Lu, Weijie Chen, Zhen Shi, Linjian Ou, Ren Hu. Dietary nutrient status modulates nutrient regeneration in the marine ciliate Euplotes vannus[J]. Acta Oceanologica Sinica, 2023, 42(11): 81-89. doi: 10.1007/s13131-023-2172-z
Citation: Xuejia He, Zhang Lu, Weijie Chen, Zhen Shi, Linjian Ou, Ren Hu. Dietary nutrient status modulates nutrient regeneration in the marine ciliate Euplotes vannus[J]. Acta Oceanologica Sinica, 2023, 42(11): 81-89. doi: 10.1007/s13131-023-2172-z

Dietary nutrient status modulates nutrient regeneration in the marine ciliate Euplotes vannus

doi: 10.1007/s13131-023-2172-z
Funds:  The Natural Science Foundation of Guangdong under contract No. 2021A1515011384.
More Information
  • Marine ciliates play important roles not only in linking the microbial loop to the classic pelagic and benthic food chains but also in regenerating nutrients, yet how dietary nutrient imbalance impacts their nutrient regeneration has not been thoroughly addressed. The growth and physiological responses of Euplotes vannus to low dietary nitrogen (LN) and low dietary phosphorus (LP) conditions were studied, with the bacterium Pseudomonas putida as prey. Feeding on LN prey reduced the growth rate of E. vannus. Dietary nutrient limitation changed the types and quantities of nutrient recycling. Feeding on LP prey enhanced dissolved organic carbon excretion but reduced orthophosphate excretion, whereas feeding on LN prey generally resulted in decreases in the excretion rate in all N forms (ammonium, urea, and nitrate). In addition, the proportion of ammonium in regenerated N increased significantly under the LN condition. These findings indicate that a nutrient-imbalanced diet triggers E. vannus to retain limited macronutrients and promotes the recycling of excessive macronutrients, which may potentially form positive and negative feedback to ambient N and P limitations, respectively.
  • loading
  • Andersson A, Lee C, Azam F, et al. 1985. Release of amino acids and inorganic nutrients by heterotropic marine microflagellates. Marine Ecology Progress Series, 23(1): 99–106
    Antia N J, Harrison P J, Oliveira L. 1991. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia, 30(1): 1–89. doi: 10.2216/i0031-8884-30-1-1.1
    Attayde J L, Hansson L A. 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia, 121(1): 47–54. doi: 10.1007/s004420050906
    Bricker S B, Longstaff B, Dennison W, et al. 2008. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae, 8(1): 21–32. doi: 10.1016/j.hal.2008.08.028
    Caron D A, Goldman J C, Andersen O K, et al. 1985. Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Marine Ecology Progress Series, 24(3): 243–254
    Cavanaugh G M. 1956. Formulae and Methods IV of the Marine Biological Laboratory Chemical Room. Woods Hole: Marine Biological Laboratory, 84
    Chrzanowski T H, Kyle M. 1996. Ratios of carbon, nitrogen and phosphorus in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquatic Microbial Ecology, 10(2): 115–122
    Chrzanowski T H, Lukomski N C, Grover J P. 2010. Element stoichiometry of a mixotrophic protist grown under varying resource conditions. Journal of Eukaryotic Microbiology, 57(4): 322–327. doi: 10.1111/j.1550-7408.2010.00487.x
    Danger M, Daufresne T, Lucas F, et al. 2008. Does Liebig's law of the minimum scale up from species to communities?. Oikos, 117(11): 1741–1751
    Dolan J R. 1997. Phosphorus and ammonia excretion by planktonic protists. Marine Geology, 139(1–4): 109–122. doi: 10.1016/S0025-3227(96)00106-5
    Elser J J, Chrzanowski T H, Sterner R W, et al. 1998. Stoichiometric constraints on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems, 1(1): 120–136. doi: 10.1007/s100219900009
    Elser J J, Hassett R P. 1994. A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature, 370(6486): 211–213. doi: 10.1038/370211a0
    Elser J J, Stabler L B, Hassett R P. 1995. Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquatic Microbial Ecology, 9(2): 105–110
    Finlay B J, Esteban G F. 1998. Freshwater protozoa: biodiversity and ecological function. Biodiversity & Conservation, 7(9): 1163–1186
    Gast V, Horstmann U. 1983. N-remineralization of phyto- and bacterioplankton by the marine ciliate Euplotes vannus. Marine Ecology Progress Series, 13(1): 55–60
    Glibert P M, Maranger R, Sobota D J, et al. 2014. The Haber Bosch—harmful algal bloom (HB-HAB) link. Environmental Research Letters, 9(10): 105001. doi: 10.1088/1748-9326/9/10/105001
    Goldman J C, Caron D A, Andersen O K, et al. 1985. Nutrient cycling in a microflagellate food chain: I. nitrogen dynamics. Marine Ecology Progress Series, 24(3): 231–242
    Golz A L, Burian A, Winder M. 2015. Stoichiometric regulation in micro- and mesozooplankton. Journal of Plankton Research, 37(2): 293–305. doi: 10.1093/plankt/fbu109
    Grasshoff K, Ehrhardt M, Kremling K, et al. 1983. Methods of Seawater Analysis. 2nd ed. Weinheim: Verlag Chemie, 125–187
    Grover J P, Chrzanowski T H. 2009. Dynamics and nutritional ecology of a nanoflagellate preying upon bacteria. Microbial Ecology, 58(2): 231–243. doi: 10.1007/s00248-009-9486-z
    Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Canadian Journal of Microbiology, 8(2): 229–239. doi: 10.1139/m62-029
    Hassett R P, Cardinale B, Stabler L B, et al. 1997. Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnology and Oceanography, 42(4): 648–662. doi: 10.4319/lo.1997.42.4.0648
    He Xuejia, Wang Wenxiong. 2008. Stoichiometric regulation of carbon and phosphorus in P-deficient Daphnia magna. Limnology and Oceanography, 53(1): 244–254. doi: 10.4319/lo.2008.53.1.0244
    Jeong H J, Yoo Y D, Kim J S, et al. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration, and grazing impact. Journal of Eukaryotic Microbiology, 51(5): 563–569. doi: 10.1111/j.1550-7408.2004.tb00292.x
    Johannes R E. 1965. Influence of marine protozoa on nutrient regeneration. Limnology and Oceanography, 10(3): 434–442. doi: 10.4319/lo.1965.10.3.0434
    Jürgens K, Güde H. 1990. Incorporation and release of phosphorus by planktonic bacteria and phagotrophic flagellates. Marine Ecology Progress Series, 59: 271–284. doi: 10.3354/meps059271
    L’Helguen S, Slawyk G, Le Corre P. 2005. Seasonal patterns of urea regeneration by size-fractionated microheterotrophs in well-mixed temperate coastal waters. Journal of Plankton Research, 27(3): 263–270. doi: 10.1093/plankt/fbh174
    Lawrence J R, Snyder R A. 1998. Feeding behaviour and grazing impacts of a Euplotes sp. on attached bacteria. Canadian Journal of Microbiology, 44(7): 623–629. doi: 10.1139/w98-057
    Lee Johansen P. 1976. A study of tintinnids and other Protozoa in eastern Canadian waters with special reference to tintinnid feeding, nitrogen excretion and reproduction rates [dissertation]. Nova Scotia: Dalhousie University
    Lei Yanli, Stumm K, Wickham S A, et al. 2014. Distributions and biomass of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. Journal of Eukaryotic Microbiology, 61(5): 493–508. doi: 10.1111/jeu.12129
    Makino W, Cotner J B, Sterner R W, et al. 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C: N: P stoichiometry. Functional Ecology, 17(1): 121–130. doi: 10.1046/j.1365-2435.2003.00712.x
    Mårdén P, Tunlid A, Malmcrona-Friberg K, et al. 1985. Physiological and morphological changes during short term starvation of marine bacterial islates. Archives of Microbiology, 142(4): 326–332. doi: 10.1007/BF00491898
    Matsunaga K, Nishimura M. 1974. A rapid and sensitive method for determination of submicrogram amounts of ammonia in fresh and sea waters. Analytica Chimica Acta, 73(1): 204–208. doi: 10.1016/S0003-2670(01)82826-9
    Miller C A, Roman M R. 2008. Effects of food nitrogen content and concentration on the forms of nitrogen excreted by the calanoid copepod, Acartia tonsa. Journal of Experimental Marine Biology and Ecology, 359(1): 11–17. doi: 10.1016/j.jembe.2008.02.016
    Nakano S I. 1994. Carbon: nitrogen: phosphorus ratios and nutrient regeneration of a heterotrophic flagellate fed on bacteria with different elemental ratios. Archiv für Hydrobiologie, 129(3): 257–271
    Nędzarek A, Stepanowska K. 2022. The excretion of nitrogen and phosphorus and changes in nitrogen content in the Antarctic amphipod Waldeckia obesa and isopod Glyptonotus antarcticus during long-term starvation. The European Zoological Journal, 89(1): 1026–1039. doi: 10.1080/24750263.2022.2107721
    Ng W H A, Liu Hongbin, Zhang Shuwen. 2017. Diel variation of grazing of the dinoflagellate Lepidodinium sp. and ciliate Euplotes sp. on algal prey: the effect of prey cell properties. Journal of Plankton Research, 39(3): 450–462. doi: 10.1093/plankt/fbx020
    Olsen Y, Andersen T, Gismervik I, et al. 2011. Marine heterotrophic bacteria, protozoan and metazoan zooplankton may experience protein N or mineral P limitation in coastal waters. Marine Ecology Progress Series, 436: 81–100. doi: 10.3354/meps09258
    Pierce R W, Turner J T. 1992. Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Science, 6(2): 139–181
    Revilla M, Alexander J, Glibert P M. 2005. Urea analysis in coastal waters: comparison of enzymatic and direct methods. Limnology and Oceanography, 3(7): 290–299
    Rothhaupt K O. 1997. Grazing and nutrient influences of Daphnia and Eudiaptomus on phytoplankton in laboratory microcosms. Journal of Plankton Research, 19(1): 125–139. doi: 10.1093/plankt/19.1.125
    Scott J T, Cotner J B, LaPara T M. 2012. Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition. Frontiers in Microbiology, 3: 42
    Siuda A N S, Dam H G. 2010. Effects of omnivory and predator-prey elemental stoichiometry on planktonic trophic interactions. Limnology and Oceanography, 55(5): 2107–2116. doi: 10.4319/lo.2010.55.5.2107
    Solórzano L, Sharp J H. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography, 25(4): 754–758. doi: 10.4319/lo.1980.25.4.0754
    Steinberg D K, Saba G K. 2008. Nitrogen consumption and metabolism in marine zooplankton. In: Capone D G, Bronk D A, Mulholland M R, et al. , eds. Nitrogen in the Marine Environment. 2nd ed. New York: Academic Press, 1135–1196
    Sterner R W, Elser J J. 2002. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press, 584
    Sterner R W, Elser J J, Hessen D O. 1992. Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry, 17(1): 49–67
    Sterner R W, Hessen D O. 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25: 1–29. doi: 10.1146/annurev.es.25.110194.000245
    Strickland J D H, Parsons T R. 1972. A Practical Handbook of Seawater Analysis. 2nd ed. Ottawa: Fisheries Research Board of Canada, 328
    Strom S L, Benner R, Ziegler S, et al. 1997. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnology and Oceanography, 42(6): 1364–1374. doi: 10.4319/lo.1997.42.6.1364
    Taylor G T, Iturriaga R, Sullivan C W. 1985. Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter. Marine Ecology Progress Series, 23(2): 129–141
    Tezuka Y. 1990. Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen: phosphorus ratio of organic substrates. Microbial Ecology, 19(3): 227–238. doi: 10.1007/BF02017167
    Valdés V P, Fernandez C, Molina V, et al. 2017. Dissolved compounds excreted by copepods reshape the active marine bacterioplankton community composition. Frontiers in Marine Science, 4: 343. doi: 10.3389/fmars.2017.00343
    White D, Hegeman G D. 1997. Microbial Physiology and Biochemistry Laboratory: A Quantitative Approach. New York: Oxford University Press
    Zhang Shuwen, Liu Hongbin, Glibert P M, et al. 2017. Effects of prey of different nutrient quality on elemental nutrient budgets in Noctiluca scintillans. Scientific Reports, 7(1): 7622. doi: 10.1038/s41598-017-05991-w
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (77) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint