Volume 42 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Shanshan Tao, Yunfei Hua, Sheng Dong. Hazard risk assessment of tropical cyclones based on joint probability theory[J]. Acta Oceanologica Sinica, 2023, 42(6): 89-99. doi: 10.1007/s13131-022-2143-9
Citation: Shanshan Tao, Yunfei Hua, Sheng Dong. Hazard risk assessment of tropical cyclones based on joint probability theory[J]. Acta Oceanologica Sinica, 2023, 42(6): 89-99. doi: 10.1007/s13131-022-2143-9

Hazard risk assessment of tropical cyclones based on joint probability theory

doi: 10.1007/s13131-022-2143-9
Funds:  The National Natural Science Foundation of China—Shandong Joint Fund under contract No. U1706226; the National Natural Science Foundation of China under contract No. 52171284.
More Information
  • Corresponding author: Email: dongsh@ouc.edu.cn
  • Received Date: 2022-07-30
  • Accepted Date: 2022-12-27
  • Available Online: 2023-06-20
  • Publish Date: 2023-06-25
  • The main hazard-causing factors of tropical cyclones are strong wind, heavy rainfall, and storm surge. Evaluation of the hazard-causing degree of a tropical cyclone requires a joint intensity analysis of these hazard-causing factors. According to the maximum hourly mean wind speed, total rainfall, and maximum tide level at various observation stations in Hong Kong during these tropical cyclones, three hazard-causing indices for tropical cyclones are introduced: the strong-wind index (VI), total-rainfall index (RI), and tide-level index (LI). Through a joint probability analysis of VI, RI, and LI for a tropical cyclone affecting Hong Kong, the joint return period is calculated to evaluate its joint hazard-causing intensity. A limit state function of Hong Kong’s resistance to tropical cyclones is developed and used to evaluate the regional risk of tropical cyclones affecting Hong Kong. The results indicate that the joint return period of VI, RI, and LI can reflect the joint hazard-causing intensity of strong wind, heavy rain, and storm surge caused by tropical cyclones; if the overall design return periods of the regional structures decrease, the regional ability to defend against tropical cyclone disasters is degraded.
  • loading
  • Bloemendaal N, Muis S, Haarsma R J, et al. 2019. Global modeling of tropical cyclone storm surges using high-resolution forecasts. Climate Dynamics, 52(7): 5031–5044. doi: 10.1007/s00382-018-4430-x
    Cerveny R S, Newman L E. 2000. Climatological relationships between tropical cyclones and rainfall. Monthly Weather Review, 128(9): 3329–3336. doi: 10.1175/1520-0493(2000)128<3329:CRBTCA>2.0.CO;2
    Chen Peiyan, Yang Yuhua, Lei Xiaotu, et al. 2009. Cause analysis and preliminary hazard estimate of typhoon disaster in China. Journal of Natural Disasters (in Chinese), 18(1): 64–73
    Chen Peiyan, Yu Hui, Xu Ming, et al. 2019. A simplified index to assess the combined impact of tropical cyclone precipitation and wind on China. Frontiers of Earth Science, 13(4): 672–681. doi: 10.1007/s11707-019-0793-5
    Czajkowski J, Villarini G, Michel-Kerjan E, et al. 2013. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environmental Research Letters, 8(4): 044056. doi: 10.1088/1748-9326/8/4/044056
    Ding Yifan, Liu Jiping, Chen Shengzhe, et al. 2020. Uniqueness of Lekima compared to tropical cyclones landed in the east coast of China during 1979–2019. Acta Oceanologica Sinica, 39(8): 121–124. doi: 10.1007/s13131-020-1639-4
    Hendricks E A. 2012. Internal dynamical control on tropical cyclone intensity variability—A review. Tropical Cyclone Research and Review, 1(1): 97–105. doi: 10.6057/2012TCRR01.11
    Hong Kong Observatory. 1997–2020. Tropical cyclone annual publications (in Chinese). https://www.hko.gov.hk/sc/publica/pubtc.htm[2022-11-17]
    Hoque M A A, Phinn S, Roelfsema C, et al. 2017. Tropical cyclone disaster management using remote sensing and spatial analysis: A review. International Journal of Disaster Risk Reduction, 22: 345–354. doi: 10.1016/j.ijdrr.2017.02.008
    Houze Jr R A. 2014. Clouds and precipitation in tropical cyclones. International Geophysics, 104: 287–327. doi: 10.1016/B978-0-12-374266-7.00010-X
    Hu Siyi, Wang Zongzhi, Wang Yintang, et al. 2010. Encounter probability analysis of typhoon and plum rain in the Taihu Lake Basin. Science China: Technological Sciences, 53(12): 3331–3340. doi: 10.1007/s11431-010-4158-2
    Kashem M, Ahmed M K, Qiao Fangli, et al. 2019. The response of the upper ocean to tropical cyclone Viyaru over the Bay of Bengal. Acta Oceanologica Sinica, 38(1): 61–70. doi: 10.1007/s13131-019-1370-1
    Kim S, Pan Shunqi, Mase H. 2019. Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan. Applied Ocean Research, 91: 101871. doi: 10.1016/j.apor.2019.101871
    Kruk M C, Gibney E J, Levinson D H, et al. 2010. A climatology of inland winds from tropical cyclones for the eastern United States. Journal of Applied Meteorology and Climatology, 49(7): 1538–1547. doi: 10.1175/2010JAMC2389.1
    Li Qingqing, Duan Yihong. 2010. Tropical cyclone strikes at the coastal cities of China from 1949 to 2008. Meteorology and Atmospheric Physics, 107(1): 1–7. doi: 10.1007/s00703-010-0065-0
    Li Ning, Liu Xueqin, Xie Wei, et al. 2013. The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution. Risk Analysis, 33(1): 134–145. doi: 10.1111/j.1539-6924.2012.01838.x
    Lin-Ye J, García-León M, Gràcia V, et al. 2017. Multivariate statistical modelling of future marine storms. Applied Ocean Research, 65: 192–205. doi: 10.1016/j.apor.2017.04.009
    Liu Xueqin, Li Ning, Yuan Shuai, et al. 2015. The joint return period analysis of natural disasters based on monitoring and statistical modeling of multidimensional hazard factors. Science of the Total Environment, 538: 724–732. doi: 10.1016/j.scitotenv.2015.08.093
    Melton G, Gall M, Mitchell J T, et al. 2010. Hurricane Katrina storm surge delineation: implications for future storm surge forecasts and warnings. Natural Hazards, 54(2): 519–536. doi: 10.1007/s11069-009-9483-z
    Meyer R J, Baker J, Broad K, et al. 2014. The dynamics of hurricane risk perception: real-time evidence from the 2012 Atlantic hurricane season. Bulletin of the American Meteorological Society, 95(9): 1389–1404. doi: 10.1175/BAMS-D-12-00218.1
    Mirabbasi R, Fakheri-Fard A, Dinpashoh Y. 2012. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108(1–2): 191–206,
    Phadke A C, Martino C D, Cheung K F, et al. 2003. Modeling of tropical cyclone winds and waves for emergency management. Ocean Engineering, 30(4): 553–578. doi: 10.1016/S0029-8018(02)00033-1
    Radfar S, Shafieefar M, Akbari H, et al. 2021. Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions. Applied Ocean Research, 112: 102711. doi: 10.1016/j.apor.2021.102711
    Saha K K, Wasimi S A. 2014. An index to assess the propensity of landfall in Australia of a tropical cyclone. Natural Hazards, 72(2): 1111–1121. doi: 10.1007/s11069-014-1058-y
    Schroeder J L, Edwards B P, Giammanco I M. 2009. Observed tropical cyclone wind flow characteristics. Wind and Structures, 12(4): 349–381. doi: 10.12989/was.2009.12.4.349
    Shao Zhuxiao, Liang Bingchen, Li Huajun, et al. 2018. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Applied Ocean Research, 71: 20–33. doi: 10.1016/j.apor.2017.11.012
    Shi Xianwu, Yu Pubing, Guo Zhixing, et al. 2020. Simulation of storm surge inundation under different typhoon intensity scenarios: case study of Pingyang County, China. Natural Hazards and Earth System Sciences, 20(10): 2777–2790. doi: 10.5194/nhess-20-2777-2020
    Sklar A. 1959. Fonctions de répartition à n dimensions et leurs marges. Paris: Publications de l'Institut de Statistique de l'Uni- versité de Paris, 229–231
    Sun Zhilin, Huang Senjun, Nie Hui, et al. 2015. Risk analysis of seawall overflowed by storm surge during super typhoon. Ocean Engineering, 107: 178–185. doi: 10.1016/j.oceaneng.2015.07.041
    Tsakiris G, Kordalis N, Tsakiris V. 2015. Flood double frequency analysis: 2D-Archimedean Copulas vs bivariate probability distributions. Environmental Processes, 2(4): 705–716. doi: 10.1007/s40710-015-0078-2
    Wang Cao, Zhang Hao. 2018. Probability-based estimate of tropical cyclone damage: An explicit approach and application to Hong Kong, China. Engineering Structures, 167: 471–480. doi: 10.1016/j.engstruct.2018.04.064
    Xiao Fengjin, Yin Yizhou, Luo Yong, et al. 2011. Tropical cyclone hazards analysis based on tropical cyclone potential impact index. Journal of Geographical Sciences, 21(5): 791–800. doi: 10.1007/s11442-011-0880-3
    Xu Hongshi, Xu Kui, Lian Jijian, et al. 2019. Compound effects of rainfall and storm tides on coastal flooding risk tochastic. Stochastic Environmental Research and Risk Assessment, 33(7): 1249–1261. doi: 10.1007/s00477-019-01695-x
    Yan Zhiduo, Wu Guoxiang, Liang Bingchen, et al. 2020. A stochastic tropical cyclone model for the northwestern Pacific Ocean with improved track and intensity representations. Applied Ocean Research, 105: 102423. doi: 10.1016/j.apor.2020.102423
    Ye Yanting, Fang Weihua. 2018. Estimation of the compound hazard severity of tropical cyclones over coastal China during 1949–2011 with copula function. Natural Hazards, 93(2): 887–903. doi: 10.1007/s11069-018-3329-5
    Yu Jinhua, Xue Huaxing, Song Jie. 2017. Tropical cyclone potential hazard in Southeast China and its linkage with the East Asian westerly jet. Asia-Pacific Journal of Atmospheric Sciences, 53(2): 295–304. doi: 10.1007/s13143-017-0028-1
    Yussouf N, Jones T A, Skinner P S. 2020. Probabilistic high-impact rainfall forecasts from landfalling tropical cyclones using Warn-on-Forecast system. Quarterly Journal of the Royal Meteorological Society, 146(730): 2050–2065. doi: 10.1002/qj.3779
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (152) PDF downloads(9) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint