Citation: | Shan Liu, Xueyi Jing, Xingrong Chen, Huijun Wang. An assessment of the subduction rate in the CMIP6 historical experiment[J]. Acta Oceanologica Sinica, 2023, 42(1): 44-60. doi: 10.1007/s13131-022-2108-z |
Bates N R, Pequignet A C, Johnson R J, et al. 2002. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature, 420(6915): 489–493. doi: 10.1038/nature01253
|
Chen Xingrong, Liu Shan, Cao Yi, et al. 2018. Potential effects of subduction rate in the key ocean on global warming hiatus. Acta Oceanologica Sinica, 37(3): 63–68. doi: 10.1007/s13131-017-1130-z
|
Chen Ju, Qu Tangdong, Sasaki Y N, et al. 2010. Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans identified by an eddy-resolving ocean GCM. Geophysical Research Letters, 37(23): L23608. doi: 10.1029/2010GL045239
|
Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
|
Gao Libao, Rintoul S R, Yu Weidong. 2018. Recent wind-driven change in subantarctic mode water and its impact on ocean heat storage. Nature Climate Change, 8: 58–63. doi: 10.1038/s41558-017-0022-8
|
Giese B S, Ray S. 2011. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. Journal of Geophysical Research: Oceans, 116(C2): C02024. doi: 10.1029/2010JC006695
|
Gu Daifang, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the Tropics and Extratropics. Science, 275(5301): 805–807. doi: 10.1126/science.275.5301.805
|
Herraiz-Borreguero L, Rintoul S R. 2010. Subantarctic mode water variability influenced by mesoscale eddies south of Tasmania. Journal of Geophysical Research: Oceans, 115(C4): C04004. doi: 10.1029/2008JC005146
|
Hong Yu, Du Yan, Xia Xingyue, et al. 2021. Subantarctic mode water and its long-term change in CMIP6 models. Journal of Climate, 34(23): 9385–9400. doi: 10.1175/JCLI-D-21-0133.1
|
Huang Ruixin, Qiu Bo. 1994. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. Journal of Physical Oceanography, 24(7): 1608–1622. doi: 10.1175/1520-0485(1994)024<1608:TDSOTW>2.0.CO;2
|
Kelley M, Schmidt G A, Nazarenko L S, et al. 2020. GISS-E2.1: configurations and climatology. Journal of Advances in Modeling Earth Systems, 12(8): e2019MS002025. doi: 10.1029/2019MS002025
|
Kubokawa A. 1999. Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. Journal of Physical Oceanography, 29(6): 1314–1333. doi: 10.1175/1520-0485(1999)029<1314:VTSABA>2.0.CO;2
|
Ladd C, Thompson L A. 2002. Decadal variability of North Pacific Central Mode Water. Journal of Physical Oceanography, 32(10): 2870–2881. doi: 10.1175/1520-0485(2002)0322.0.CO;2
|
Levitus S. 1982. Climatological Atlas of the World Ocean. Princeton, NJ: NOAA
|
Li Guancheng, Cheng Lijing, Zhu Jiang, et al. 2020. Increasing ocean stratification over the past half-century. Nature Climate Change, 10(12): 1116–1123. doi: 10.1038/s41558-020-00918-2
|
Liu Zhengyu, Huang Boyin. 1998. Why is there a tritium maximum in the central equatorial Pacific thermocline?. Journal of Physical Oceanography, 28(7): 1527–1533. doi: 10.1175/1520-0485(1998)028<1527:WITATM>2.0.CO;2
|
Liu Lingling, Huang Ruixin. 2012. The global subduction/obduction rates: Their interannual and decadal variability. Journal of Climate, 25(4): 1096–1115. doi: 10.1175/2011JCLI4228.1
|
Liu Lingling, Wang Fan, Huang Ruixin. 2011. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening. Deep-Sea Research Part I: Oceanographic Research Papers, 58(6): 658–667. doi: 10.1016/j.dsr.2011.04.003
|
Liu Chengyan, Wu Lixin. 2012. An intensification trend of South Pacific Mode Water subduction rates over the 20th century. Journal of Geophysical Research: Oceans, 117(C7): C07009. doi: 10.1029/2011JC007755
|
Liu Cong, Xu Lixiao, Xie Shangping, et al. 2019. Effects of anticyclonic eddies on the multicore structure of the North Pacific subtropical mode water based on Argo observations. Journal of Geophysical Research: Oceans, 124(11): 8400–8413. doi: 10.1029/2019JC015631
|
Luo Yiyong, Liu Qinyu, Rothstein L M. 2009. Simulated response of North Pacific mode waters to global warming. Geophysical Research Letters, 36(23): L23609. doi: 10.1029/2009GL040906
|
Luo Yiyong, Liu Qinyu, Rothstein L M. 2011. Increase of South Pacific eastern subtropical mode water under global warming. Geophysical Research Letters, 38(1): L01601. doi: 10.1029/2010GL045878
|
Ma Jie, Lan Jian. 2017. Interannual variability of Indian Ocean subtropical mode water subduction rate. Climate Dynamics, 48(11): 4093–4107. doi: 10.1007/s00382-016-3322-1
|
McPhaden M J, Zhang Dongxiao. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415(6872): 603–608. doi: 10.1038/415603a
|
Oka E, Qiu Bo. 2012. Progress of North Pacific mode water research in the past decade. Journal of Oceanography, 68(1): 5–20. doi: 10.1007/s10872-011-0032-5
|
Oka E, Suga T. 2005. Differential formation and circulation of North Pacific central mode water. Journal of Physical Oceanography, 35(11): 1997–2011. doi: 10.1175/JPO2811.1
|
Palter J B, Lozier M S, Barber R T. 2005. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature, 437(7059): 687–692. doi: 10.1038/nature03969
|
Qiu Zishan, Wei Zexun, Nie Xunwei, et al. 2021. Southeast Indian Subantarctic Mode water in the CMIP6 coupled models. Journal of Geophysical Research: Oceans, 126(7): e2020JC016872. doi: 10.1029/2020JC016872
|
Qu Tangdong, Chen Ju. 2009. A North Pacific decadal variability in subduction rate. Geophysical Research Letters, 36(22): L22602. doi: 10.1029/2009GL040914
|
Qu Tangdong, Xie Shangping, Mitsudera H, et al. 2002. Subduction of the North Pacific mode waters in a global high-resolution GCM. Journal of Physical Oceanography, 32(3): 746–763. doi: 10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2
|
Sallée J B, Shuckburgh E, Bruneau N, et al. 2013a. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4): 1830–1844. doi: 10.1002/jgrc.20135
|
Sallée J B, Shuckburgh E, Bruneau N, et al. 2013b. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4): 1845–1862. doi: 10.1002/jgrc.20157
|
Suga T, Aoki Y, Saito H, et al. 2008. Ventilation of the North Pacific subtropical pycnocline and mode water formation. Progress in Oceanography, 77(4): 285–297. doi: 10.1016/j.pocean.2006.12.005
|
Suga T, Hanawa K. 1995. The subtropical mode water circulation in the North Pacific. Journal of Physical Oceanography, 25(5): 958–970. doi: 10.1175/1520-0485(1995)025<0958:TSMWCI>2.0.CO;2
|
Toyama K, Iwasaki A, Suga T. 2015. Interannual variation of annual subduction rate in the North Pacific estimated from a gridded Argo product. Journal of Physical Oceanography, 45(9): 2276–2293. doi: 10.1175/JPO-D-14-0223.1
|
Xia Xingxue, Xu Lixiao, Xie Shangping, et al. 2021. Fast and slow responses of the Subantarctic Mode Water in the South Indian Ocean to global warming in CMIP5 extended RCP4.5 simulations. Climate Dynamics, 56(9): 3157–3171. doi: 10.1007/s00382-021-05635-w
|
Xu Lixiao, Li Peiliang, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505. doi: 10.1038/ncomms10505
|
Xu Lixiao, Xie Shangping, Jing Zhao, et al. 2017. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge. Geophysical Research Letters, 44(4): 1857–1865. doi: 10.1002/2016GL072163
|
Xu Lixiao, Xie Shangping, McClean J L, et al. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. Journal of Geophysical Research: Oceans, 119(8): 4867–4886. doi: 10.1002/2014JC009861
|