Citation: | Jiahui Chen, Shichen Zeng, Min Gao, Guangcheng Chen, Heng Zhu, Yong Ye. Potential effects of sea level rise on the soil-atmosphere greenhouse gas emissions in Kandelia obovata mangrove forests[J]. Acta Oceanologica Sinica, 2023, 42(4): 25-32. doi: 10.1007/s13131-022-2087-0 |
Allen S E, Grimshaw H M, Parkinson J A, et al. 1974. Chemical Analysis of Ecological Materials. Oxford: Blackwell Scientific Publications
|
Alongi D M. 2009. The Energetics of Mangrove Forests. Dordrecht: Springer
|
Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219. doi: 10.1146/annurev-marine-010213-135020
|
Breithaupt J L, Smoak J M, Smith III T J, et al. 2012. Organic carbon burial rates in mangrove sediments: strengthening the global budget. Global Biogeochemical Cycles, 26(3): GB3011
|
Capooci M, Barba J, Seyfferth A L, et al. 2019. Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh. Science of the Total Environment, 686: 1164–1172. doi: 10.1016/j.scitotenv.2019.06.032
|
Chambers L G, Osborne T Z, Reddy K R. 2013. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry, 115(1): 363–383
|
Chang Tsan-Chang, Yang Shang-Shyng. 2003. Methane emission from wetlands in Taiwan. Atmospheric Environment, 37(32): 4551–4558. doi: 10.1016/S1352-2310(03)00588-0
|
Chapuis-Lardy L, Wrage N, Metay A, et al. 2007. Soils, a sink for N2O? A review. Global Biogeochemical Cycles, 13(1): 1–17
|
Chauhan R, Ramanathan A L, Adhya T K. 2008. Assessment of methane and nitrous oxide flux from mangroves along eastern coast of India. Geofluids, 8(4): 321–332. doi: 10.1111/j.1468-8123.2008.00227.x
|
Chen Guangcheng, Chen Jiahui, Ou Danyun, et al. 2020a. Increased nitrous oxide emissions from intertidal soil receiving wastewater from dredging shrimp pond sediments. Environmental Research Letters, 15(9): 094015. doi: 10.1088/1748-9326/ab93fb
|
Chen Yaping, Chen Guangcheng, Ye Yong. 2015. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Science of the Total Environment, 526: 19–28. doi: 10.1016/j.scitotenv.2015.04.077
|
Chen Guangcheng, Chen Bin, Yu Dan, et al. 2016. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environmental Research Letters, 11(12): 124019. doi: 10.1088/1748-9326/11/12/124019
|
Chen Jiahui, Gao Min, Chen Guangcheng, et al. 2022a. Biomass accumulation and organic carbon stocks of Kandelia obovata mangrove vegetation under different simulated sea levels. Acta Oceanologica Sinica, 41(8): 78–86. doi: 10.1007/s13131-021-1891-2
|
Chen Guangcheng, Gao Min, Pang Bopeng, et al. 2018. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Forest Ecology and Management, 422: 87–94. doi: 10.1016/j.foreco.2018.03.044
|
Chen Jiahui, Huang Yingying, Chen Guangcheng, et al. 2020b. Effects of simulated sea level rise on stocks and sources of soil organic carbon in Kandelia obovata mangrove forests. Forest Ecology and Management, 460: 117898. doi: 10.1016/j.foreco.2020.117898
|
Chen Guangcheng, Tam N F Y, Ye Yanlei. 2010. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of the Total Environment, 408(13): 2761–2767. doi: 10.1016/j.scitotenv.2010.03.007
|
Chen Guangcheng, Tam Nora F Y, Ye Yong. 2012. Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biology and Biochemistry, 48: 175–181. doi: 10.1016/j.soilbio.2012.01.029
|
Chen Luzhen, Wang Wenqing. 2017. Ecophysiological responses of viviparous mangrove Rhizophora stylosa seedlings to simulated sea-level rise. Journal of Coastal Research, 33(6): 1333–1340
|
Chen Yaping, Ye Yong. 2013. Growth and physiological responses of saplings of two mangrove species to intertidal elevation. Marine Ecology Progress Series, 482: 107–118. doi: 10.3354/meps10274
|
Chen Yaping, Ye Yong. 2014. Early responses of Avicennia marina (Forsk.) Vierh. to intertidal elevation and light level. Aquatic Botany, 112: 33–40. doi: 10.1016/j.aquabot.2013.07.006
|
Chen Jiahui, Zhu Heng, Huang Yingying, et al. 2022b. Potential effects of sea level rise on decomposition and nutrient release of dead fine roots in a Kandelia obovata forest. Estuarine, Coastal and Shelf Science, 268: 107809
|
Christensen T R, Ekberg A, Ström L, et al. 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters, 30(7): 1414
|
Clough T J, Sherlock R R, Rolston D E. 2005. A review of the movement and fate of N2O in the subsoil. Nutrient Cycling in Agroecosystems, 72(1): 3–11. doi: 10.1007/s10705-004-7349-z
|
Corredor J E, Morell J M, Bauza J. 1999. Atmospheric nitrous oxide fluxes from mangrove sediments. Marine Pollution Bulletin, 38(6): 473–478. doi: 10.1016/S0025-326X(98)00172-6
|
Davidson N C, Fluet-Chouinard E, Finlayson C M. 2018. Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research, 69(4): 620–627. doi: 10.1071/MF17019
|
Donato D C, Kauffman J B, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5): 293–297. doi: 10.1038/ngeo1123
|
Heincke M, Kaupenjohann M. 1999. Effects of soil solution on the dynamics of N2O emissions: a review. Nutrient Cycling in Agroecosystems, 55(2): 133–157. doi: 10.1023/A:1009842011599
|
Inubushi K, Barahona M A, Yamakawa K. 1999. Effects of salts and moisture content on N2O emission and nitrogen dynamics in yellow soil and andosol in model experiments. Biology and Fertility of Soils, 29(4): 401–407. doi: 10.1007/s003740050571
|
IPCC. 2013. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
|
Jayanthi M, Thirumurthy S, Samynathan M, et al. 2018. Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India. Environmental Monitoring and Assessment, 190(1): 51. doi: 10.1007/s10661-017-6426-0
|
Jørgensen C J, Elberling B. 2012. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil. Soil Biology and Biochemistry, 53: 9–17. doi: 10.1016/j.soilbio.2012.05.005
|
Kirwan M L, Gedan K B. 2019. Sea-level driven land conversion and the formation of ghost forests. Nature Climate Change, 9(6): 450–457. doi: 10.1038/s41558-019-0488-7
|
Krauss K W, McKee K L, Lovelock C E, et al. 2014. How mangrove forests adjust to rising sea level. New Phytologist, 202(1): 19–34. doi: 10.1111/nph.12605
|
Langston A K, Kaplan D A, Putz F E. 2017. A casualty of climate change? Loss of freshwater forest islands on Florida’s Gulf Coast. Global Change Biology, 23(12): 5383–5397. doi: 10.1111/gcb.13805
|
Liikanen A, Martikainen P J. 2003. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake. Chemosphere, 52(8): 1287–1293. doi: 10.1016/S0045-6535(03)00224-8
|
Liu Chuan, Li Ya, Wang Hui. 2019. Ocean Blue Book on Climate Change in China in 2019 (in Chinese). Tianjin: National Oceanographic Information Center, Ministry of Natural Resources of the People’s Republic of China
|
Lovelock C E, Cahoon D R, Friess D A, et al. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526(7574): 559–563. doi: 10.1038/nature15538
|
Mafi-Gholami D, Zenner E K, Jaafari A. 2020. Mangrove regional feedback to sea level rise and drought intensity at the end of the 21st century. Ecological Indicators, 110: 105972. doi: 10.1016/j.ecolind.2019.105972
|
McLeod E, Chmura G L, Bouillon S, et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552–560. doi: 10.1890/110004
|
Meeder J F, Parkinson R W, Ogurcak D, et al. 2021. Changes in sediment organic carbon accumulation under conditions of historical sea-level rise, Southeast Saline Everglades, Florida, USA. Wetlands, 41(4): 41. doi: 10.1007/s13157-021-01440-7
|
Menyailo O V, Stepanov A L, Umarov M M. 1997. The transformation of nitrous oxide by denitrifying bacteria in Solonchaks. Eurasian Soil Science, 30(2): 178–180
|
Minick K J, Mitra B, Noormets A, et al. 2019. Saltwater reduces potential CO2 and CH4 production in peat soils from a coastal freshwater forested wetland. Biogeosciences, 16(23): 4671–4686. doi: 10.5194/bg-16-4671-2019
|
Myhre G, Shindell D, Bréon F M, et al. 2013. Anthropogenic and natural radiative forcing. In: Stocker T F, Qin D, Plattner G K, et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
|
Perera K A R S, De Silva K H W L, Amarasinghe M D. 2018. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global and Planetary Change, 161: 162–171. doi: 10.1016/j.gloplacha.2017.12.016
|
Poffenbarger H J, Needelman B A, Megonigal J P. 2011. Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5): 831–842. doi: 10.1007/s13157-011-0197-0
|
Poungparn S, Komiyama A, Tanaka A, et al. 2009. Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. Journal of Tropical Ecology, 25(4): 393–400. doi: 10.1017/S0266467409006154
|
Rogers K, Kelleway J J, Saintilan N, et al. 2019. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567(7746): 91–95. doi: 10.1038/s41586-019-0951-7
|
Ruan Hailin, Yang Yanming, Li Yanchu, et al. 2010. Study of the variation in sea level around Taiwan Island during the last 16 years. Journal of Oceanography in Taiwan Strait (in Chinese), 29(3): 394–401
|
Sheng Nong, Wu Feng, Liao Baowen, et al. 2021. Methane and carbon dioxide emissions from cultivated and native mangrove species in Dongzhai Harbor, Hainan. Ecological Engineering, 168: 106285. doi: 10.1016/j.ecoleng.2021.106285
|
Stumm W, Morgan J J. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. 2nd ed. New York: John Wiley & Sons, 448–463
|
Wang Gang, Guan Dongsheng, Xiao Ling, et al. 2019. Ecosystem carbon storage affected by intertidal locations and climatic factors in three estuarine mangrove forests of South China. Regional Environmental Change, 19(6): 1701–1712. doi: 10.1007/s10113-019-01515-6
|
Wei Siyu, Han Guangxuan, Chu Xiaojing, et al. 2020. Effect of tidal flooding on ecosystem CO2 and CH4 fluxes in a salt marsh in the Yellow River Delta. Estuarine, Coastal and Shelf Science, 232: 106512
|
Ye Yong, Gu Yantao, Gao Haiyan, et al. 2010. Combined effects of simulated tidal sea-level rise and salinity on seedlings of a mangrove species, Kandelia candel (L. ) Druce. Hydrobiologia, 641(1): 287–300. doi: 10.1007/s10750-010-0099-9
|
Zhang Zhen, Fluet-Chouinard E, Jensen K, et al. 2021. Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth System Science Data, 13(5): 2001–2023. doi: 10.5194/essd-13-2001-2021
|