Citation: | Dong Li, Jun Zhao, Chenggang Liu, Jianming Pan, Ji Hu. Lateral downslope transport and tentative sedimentary organic carbon box model in the southern Yap Trench, western Pacific Ocean[J]. Acta Oceanologica Sinica, 2023, 42(1): 61-74. doi: 10.1007/s13131-022-2043-z |
Andersson A. 2011. A systematic examination of a random sampling strategy for source apportionment calculations. Science of the Total Environment, 412–413: 232–238,
|
Andrews J T, Milliman J D, Jennings A E, et al. 1994. Sediment thicknesses and Holocene glacial marine sedimentation rates in three East Greenland fjords (ca. 68°N). The Journal of Geology, 102(6): 669–683. doi: 10.1086/629711
|
Bao Rui, Strasser M, McNichol A P, et al. 2018. Tectonically-triggered sediment and carbon export to the hadal zone. Nature Communications, 9(1): 121–128. doi: 10.1038/s41467-017-02504-1
|
Beliaev G M, Brueggeman P L. 1989. Deep Sea Ocean Trenches and Their Fauna. Moscow: Nauka
|
Boston B, Moore G F, Nakamura Y, et al. 2017. Forearc slope deformation above the Japan Trench megathrust: implications for subduction erosion. Earth and Planetary Science Letters, 462: 26–34. doi: 10.1016/j.jpgl.2017.01.005
|
Brady P V, Gíslason S R. 1997. Seafloor weathering controls on atmospheric CO2 and global climate. Geochimica et Cosmochimica Acta, 61(5): 965–973. doi: 10.1016/S0016-7037(96)00385-7
|
Dymond J, Collier R, McManus J, et al. 1997. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans?. Paleoceanography, 12(4): 586–593. doi: 10.1029/97pa01135
|
Fu Lulu, Li Dong, Mi Tiezhu, et al. 2020. Characteristics of the archaeal and bacterial communities in core sediments from southern Yap Trench via in situ sampling by the manned submersible Jiaolong. Science of the Total Environment, 703: 134884. doi: 10.1016/j.scitotenv.2019.134884
|
Glud R N. 2008. Oxygen dynamics of marine sediments. Marine Biology Research, 4(4): 243–289. doi: 10.1080/17451000801888726
|
Glud R N, Berg P, Thamdrup B, et al. 2021. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Communications Earth & Environment, 2: 21. doi: 10.1038/s43247-020-00087-2
|
Glud R N, Wenzhöfer F, Middelboe M, et al. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience, 6(4): 284–288. doi: 10.1038/NGEO1773
|
Guan Hongxiang, Chen Linying, Luo Min, et al. 2019. Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench. Geoscience Frontiers, 10(1): 351–360. doi: 10.1016/j.gsf.2018.01.004
|
Hayward B W, Sabaa A, Grenfell H R. 2004. Benthic foraminifera and the late Quaternary (last 150 ka) paleoceanographic and sedimentary history of the Bounty Trough, east of New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(1–2): 59–93,
|
He Hui, Zhen Yu, Mi Tiezhu, et al. 2015. Community composition and distribution of sulfate- and sulfite-reducing prokaryotes in sediments from the Changjiang Estuary and adjacent East China Sea. Estuarine, Coastal and Shelf Science, 165: 75–85,
|
Hu Limin, Guo Zhigang, Feng Jialiang, et al. 2009. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Marine Chemistry, 113(3–4): 197–211,
|
Ichino M C, Clark M R, Drazen J C, et al. 2015. The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Research Part I: Oceanographic Research Papers, 100: 21–33. doi: 10.1016/j.dsr.2015.01.010
|
Kitahashi T, Kawamura K, Kojima S, et al. 2013. Assemblages gradually change from bathyal to hadal depth: a case study on harpacticoid copepods around the Kuril Trench (north-west Pacific Ocean). Deep-Sea Research Part I: Oceanographic Research Papers, 74: 39–47. doi: 10.1016/j.dsr.2012.12.010
|
Leduc D, Rowden A A, Glud R N, et al. 2016. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply. Deep-Sea Research Part I: Oceanographic Research Papers, 116: 264–275. doi: 10.1016/j.dsr.2015.11.003
|
Leduc D, Rowden A A, Probert P K, et al. 2012. Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity. Deep-Sea Research Part I: Oceanographic Research Papers, 63: 164–169. doi: 10.1016/j.dsr.2011.10.009
|
Li Xinxin, Bianchi T S, Yang Zuosheng, et al. 2011. Historical trends of hypoxia in Changjiang River Estuary: applications of chemical biomarkers and microfossils. Journal of Marine Systems, 86(3–4): 57–68,
|
Li Jiwei, Chen Zhiyan, Li Xinxin, et al. 2021. The sources of organic carbon in the deepest ocean: implication from bacterial membrane lipids in the Mariana Trench Zone. Frontiers in Earth Science, 9: 653742. doi: 10.3389/feart.2021.653742
|
Li Dong, Yao Peng, Bianchi T S, et al. 2014. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: implication for the influence of Three Gorges Dam. Journal of Marine Systems, 139: 409–419. doi: 10.1016/j.jmarsys.2014.08.009
|
Li Dong, Yao Peng, Bianchi T S, et al. 2015. Historical reconstruction of organic carbon inputs to the East China Sea inner-shelf: implications for anthropogenic activities and regional climate variability. The Holocene, 25(12): 1869–1881. doi: 10.1177/0959683615591358
|
Li Dong, Zhao Jun, Liu Chenggang, et al. 2020a. Comparison of sedimentary organic carbon loading in the Yap Trench and other marine environments. Journal of Oceanology and Limnology, 38(3): 619–633. doi: 10.1007/s00343-019-8365-9
|
Li Dong, Zhao Jun, Yao Peng, et al. 2020b. Spatial heterogeneity of organic carbon cycling in sediments of the northern Yap Trench: implications for organic carbon burial. Marine Chemistry, 223: 103813. doi: 10.1016/j.marchem.2020.103813
|
Liu Yongzhi, Liu Xuehai, Lv Xianqing, et al. 2018. Watermass properties and deep currents in the northern Yap Trench observed by the Submersible Jiaolong system. Deep-Sea Research Part I: Oceanographic Research Papers, 139: 27–42. doi: 10.1016/j.dsr.2018.06.001
|
Liu Shuangquan, Peng Xiaotong. 2019. Organic matter diagenesis in hadal setting: insights from the pore-water geochemistry of the Mariana Trench sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 147: 22–31. doi: 10.1016/j.dsr.2019.03.011
|
Liu Yang, Wu Ziyin, Zhao Dineng, et al. 2019a. Construction of high-resolution bathymetric dataset for the Mariana Trench. IEEE Access, 7: 142441–142450. doi: 10.1109/access.2019.2944667
|
Liu Jiwen, Zheng Yanfen, Lin Heyu, et al. 2019b. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome, 7(1): 47. doi: 10.1186/s40168-019-0652-3
|
Luo Min, Algeo T J, Tong Hongpeng, et al. 2018a. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity. Deep-Sea Research Part II: Topical Studies in Oceanography, 155: 70–82. doi: 10.1016/j.dsr2.2017.01.006
|
Luo Min, Gieskes J, Chen Linying, et al. 2017. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Marine Geology, 386: 98–106. doi: 10.1016/j.margeo.2017.02.012
|
Luo Min, Gieskes L, Chen Linying, et al. 2019. Sources, degradation, and transport of organic matter in the New Britain Shelf-Trench continuum, Papua New Guinea. Journal of Geophysical Research: Biogeosciences, 124(6): 1680–1695. doi: 10.1029/2018JG004691
|
Luo Min, Glud R N, Pan Binbin, et al. 2018b. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophysical Research Letters, 45(6): 2752–2760. doi: 10.1002/2017GL076232
|
Lutz M J, Caldeira K, Dunbar R B, et al. 2007. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10): C10011. doi: 10.1029/2006JC003706
|
Nakatsuka T, Handa N, Harada N, et al. 1997. Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distributions of its δ15N, δ13C and δ14C. Deep-Sea Research Part I: Oceanographic Research Papers, 44(12): 1957–1979. doi: 10.1016/S0967-0637(97)00051-4
|
Nielsen M E, Fisk M R. 2010. Surface area measurements of marine basalts: implications for the subseafloor microbial biomass. Geophysical Research Letters, 37(15): L15604. doi: 10.1029/2010GL044074
|
Nozaki Y, Ohta Y. 1993. Rapid and frequent turbidite accumulation in the bottom of Izu-Ogasawara Trench: chemical and radiochemical evidence. Earth and Planetary Science Letters, 120(3–4): 345–360,
|
Nunoura Y, Nishizawa M, Hirai M, et al. 2018. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes and Environments, 33(2): 186–194. doi: 10.1264/jsme2.ME17194
|
Nunoura T, Takaki Y, Hirai M, et al. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(11): E1230–E1236. doi: 10.1073/pnas.1421816112
|
Oakley A J, Taylor B, Moore G F. 2008. Pacific Plate subduction beneath the central Mariana and Izu-Bonin fore arcs: new insights from an old margin. Geochemistry, Geophysics, Geosystems, 9(6): Q06003,
|
Oguri K, Kawamura K, Sakaguchi A, et al. 2013. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Scientific Reports, 3: 1915. doi: 10.1038/srep01915
|
Paetsch H, Botz R, Scholten J C, et al. 1992. Accumulation rates of surface sediments in the Norwegian-Greenland Sea. Marine Geology, 104(1–4): 19–30,
|
Reimer P J, Bard E, Bayliss A, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 Years cal BP. Radiocarbon, 55(4): 1869–1887. doi: 10.2458/azu_js_rc.55.16947
|
Schauberger C, Glud R N, Hausmann B, et al. 2021. Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. The ISME Journal, 15(12): 3455–3467. doi: 10.1038/s41396-021-01021-w
|
Schwestermann T, Eglinton T I, Haghipour N, et al. 2021. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench. Earth and Planetary Science Letters, 563: 116870. doi: 10.1016/j.jpgl.2021.116870
|
Shi Linlin, Zhang Xi, Xiao Wenjie, et al. 2020. Ontogenetic diet change of hadal amphipods in the New Britain Trench revealed by fatty acid biomarker and stable isotope ratio. Deep-Sea Research Part I: Oceanographic Research Papers, 160: 103276. doi: 10.1016/j.dsr.2020.103276
|
Six K D, Maier-Reimer E. 1996. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Global Biogeochemical Cycles, 10(4): 559–583. doi: 10.1029/96gb02561
|
Song Guodong, Liu Sumei, Zhu Zhuoyi, et al. 2016. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 124: 53–63. doi: 10.1016/j.dsr2.2015.04.012
|
Stewart H A, Jamieson A J. 2018. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Progress in Oceanography, 161: 47–65. doi: 10.1016/j.pocean.2018.01.007
|
Talma A S, Vogel J C. 1993. A simplified approach to calibrating 14C dates. Radiocarbon, 35(2): 317–322. doi: 10.1017/s0033822200065000
|
Tian Jiwei, Fan Lu, Liu Haodong, et al. 2018. A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior. Deep-Sea Research Part I: Oceanographic Research Papers, 142: 116–126. doi: 10.1016/j.dsr.2018.10.002
|
Turnewitsch R, Falahat S, Stehlikova J, et al. 2014. Recent sediment dynamics in hadal trenches: evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics. Deep-Sea Research Part I: Oceanographic Research Papers, 90: 125–138. doi: 10.1016/j.dsr.2014.05.005
|
Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744): 525–531. doi: 10.1038/22941
|
Wakeham S G, Canuel E A, Lerberg E J, et al. 2009. Partitioning of organic matter in continental margin sediments among density fractions. Marine Chemistry, 115(3–4): 211–225,
|
Wang Jinpeng, Yao Peng, Bianchi T S, et al. 2015. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Chemical Geology, 402: 52–67. doi: 10.1016/j.chemgeo.2015.02.040
|
Waterson E J, Canuel E A. 2008. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Organic Geochemistry, 39(4): 422–439. doi: 10.1016/j.orggeochem.2008.01.011
|
Wenzhöfer F, Oguri K, Middelboe M, et al. 2016. Benthic carbon mineralization in hadal trenches: assessment by in situ O2 microprofile measurements. Deep-Sea Research Part I: Oceanographic Research Papers, 116: 276–286. doi: 10.1016/j.dsr.2016.08.013
|
Xia Chenglong, Zheng Yanpeng, Liu Baohua, et al. 2020. Geological and geophysical differences between the north and south sections of the Yap trench-arc system and their relationship with Caroline Ridge subduction. Geological Journal, 55(12): 7775–7789. doi: 10.1002/gj.3903
|
Xiao Wenjie, Wang Yasong, Liu Yongsheng, et al. 2020a. Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication. Biogeosciences, 17(7): 2135–2148. doi: 10.5194/bg-17-2135-2020
|
Xiao Weijie, Xu Yunping, Haghipour N, et al. 2020b. Efficient sequestration of terrigenous organic carbon in the New Britain Trench. Chemical Geology, 533: 119446. doi: 10.1016/j.chemgeo.2019.119446
|
Xu Yunping, Wu Weichao, Xiao Wenjie, et al. 2020b. Intact ether lipids in trench sediments related to archaeal community and environmental conditions in the deepest ocean. Journal of Geophysical Research: Biogeosciences, 125(7): e2019JG005431. doi: 10.1029/2019JG005431
|
Yang Yaomin, Wu Shiguo, Gao Jinwei, et al. 2018. Geology of the Yap Trench: new observations from a transect near 10°N from manned submersible Jiaolong. International Geology Review, 60(16): 1941–1953. doi: 10.1080/00206814.2017.1394226
|
Yue Xin’an, Yan Yixin, Ding Haibing, et al. 2018. Biological geochemical characteristics of the sediments in the Yap Trench and its oceanographic significance. Periodical of Ocean University of China (in Chinese), 48(3): 88–96. doi: 10.16441/j.cnki.hdxb.20170145
|
Zhang Zhengyi, Dong Dongdong, Sun Weidong, et al. 2019. Subduction erosion, crustal structure, and an evolutionary model of the northern Yap Subduction zone: new observations from the latest geophysical survey. Geochemistry, Geophysics, Geosystems, 20(1): 166–182,
|
Zimmerman A R, Canuel E A. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69(1–2): 117–137,
|
LiDong-supplementary material-20220311.doc |