Volume 42 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Long Ma, Chenguang Liu, An Yang, Baohua Liu, Chenglong Xia. Characteristics of gravity anomalies and tectonic analysis of Enderby Land in East Antarctica and its adjacent areas[J]. Acta Oceanologica Sinica, 2023, 42(2): 94-103. doi: 10.1007/s13131-022-2029-x
Citation: Long Ma, Chenguang Liu, An Yang, Baohua Liu, Chenglong Xia. Characteristics of gravity anomalies and tectonic analysis of Enderby Land in East Antarctica and its adjacent areas[J]. Acta Oceanologica Sinica, 2023, 42(2): 94-103. doi: 10.1007/s13131-022-2029-x

Characteristics of gravity anomalies and tectonic analysis of Enderby Land in East Antarctica and its adjacent areas

doi: 10.1007/s13131-022-2029-x
Funds:  The National Natural Science Foundation of China under contract No. 42006198; the Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences under contract No. MGE2020KG02.
More Information
  • Corresponding author: E-mail: malong@fio.org.cn
  • Received Date: 2021-08-23
  • Accepted Date: 2022-04-24
  • Available Online: 2022-11-28
  • Publish Date: 2023-02-25
  • Enderby Land in East Antarctica and its adjacent areas, which are closely related to the Indian Plate in their geological evolution, have become one of the key zones for studies on how the Antarctic continent evolves. Based on the isostasy and flexure theories of the lithosphere and using the CRUST1.0 model as the depth constraint, this paper uses the gravity field model EIGEN-6C4 and topographic data to calculate the isostatic gravity anomalies of Enderby Land and its adjacent areas. Then, the crustal thickness of the study area is calculated, and three comprehensive geophysical interpretation profiles that vertically span the study area are plotted. The results show that the flexural isostatic gravity anomalies in Enderby Land and its adjacent areas are closely related to the regional tectonic setting, and the anomalies in different regions differ substantially, ranging from −50×10−5 m/s2 to 85×10−5 m/s2. A zone of high isostatic gravity anomalies (30×10−5–80×10−5 m/s2) is distributed outside the Cooperation Sea and Queen Maud Land, which may be plate remnants generated by early rifting. Except for the Kerguelen Plateau, which was formed by a hotspot and has a crustal thickness of 15 km, the thickness of the oceanic crust in other parts of the study area changes slightly by approximately 4–9 km, with the thinnest part being in Enderby Basin. The thickness of the inland crust along the coastline increases with the elevation, with the maximum thickness reaching 34 km. The isostatic gravity anomalies corresponding to the zone of high magnetic anomalies along the continental margin of Queen Maud Land are negative and small, with an isostatic adjustment trend indicating Moho surface uplift, and those on the edge of central Enderby Land are near zero, approaching the isostatic state, which may be caused by the magmatism at the early stage of rifting. The continental-oceanic boundary should be close to the contour line of the crustal thickness 10–12 km on the outer edge of the coastline.
  • loading
  • Amante C, Eakins B W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. Bouder, CO: National Geophysical Data Center, NOAA.
    Belyatsky B V, Rodionov N V, Antonov A V, et al. 2011. The 3.98–3.63 Ga zircons as indicators of major processes operating in the ancient continental crust of the east Antarctic shield (Enderby Land). Doklady Earth Sciences, 438(Pt 2): 770–774
    Chauvet F, Sapin F, Geoffroy L, et al. 2021. Conjugate volcanic passive margins in the austral segment of the South Atlantic-Architecture and development. Earth-Science Reviews, 212: 103461. doi: 10.1016/j.earscirev.2020.103461
    Chen Bo. 2013. The effective elastic thickness over China and surroundings and its lithosphere dynamic implication (in Chinese)[dissertation]. Wuhan: China University of Geosciences
    Chen Bo, Haeger C, Kaban M K, et al. 2018. Variations of the effective elastic thickness reveal tectonic fragmentation of the Antarctic lithosphere. Tectonophysics, 746: 412–424. doi: 10.1016/j.tecto.2017.06.012
    Davis J K, Lawver L A, Norton I O, et al. 2016. New Somali Basin magnetic anomalies and a plate model for the early Indian Ocean. Gondwana Research, 34: 16–28. doi: 10.1016/j.gr.2016.02.010
    Davis J K, Lawver L A, Norton I O, et al. 2019. The crustal structure of the Enderby Basin, East Antarctica. Marine Geophysical Research, 40(1): 1–16. doi: 10.1007/s11001-018-9356-5
    DePaolo D J, Manton W I, Grew E S, et al. 1982. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica. Nature, 298(5875): 614–618. doi: 10.1038/298614a0
    Foerste C, Bruinsma S L, Abrykosov O, et al. 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. Potsdam: GFZ Data Services
    Gaina C, Müller R D, Brown B, et al. 2007. Breakup and early seafloor spreading between India and Antarctica. Geophysical Journal of the Royal Astronomical Society, 170(1): 151–169. doi: 10.1111/j.1365-246X.2007.03450.x
    Gee J S, Kent D V. 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise on Geophysics, 5: 455–507. doi: 10.1016/B978-044452748-6/00097-3
    Gibbons A D, Whittaker J M, Müller R D. 2013. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. Journal of Geophysical Research: Solid Earth, 118(3): 808–822. doi: 10.1002/jgrb.50079
    Gladczenko T P, Skogseid J, Eldhom O. 1998. Namibia volcanic margin. Marine Geophysical Researches, 20: 313–341. doi: 10.1023/A:1004746101320
    Golynsky A V, Alyavdin S V, Masolov V N, et al. 2002. The composite magnetic anomaly map of the East Antarctic. Tectonophysics, 347(1–3): 109–120
    Golynsky A, Blankenship D, Chiapini M, et al. 2007. New magnetic anomaly map of East Antarctica and surrounding regions. In: Proceedings for the Tenth International Symposium on Antarctic Earth Sciences. USGS Open-FileReport 2007-1047, Short Research Paper 50: 1–4
    Golynsky A V, Ivanov S V, Kazankov A J, et al. 2013. New continental margin magnetic anomalies of East Antarctica. Tectonophysics, 585: 172–184. doi: 10.1016/j.tecto.2012.06.043
    Gray D R, Foster D A, Meert J G, et al. 2008. A Damara orogen perspective on the assembly of southwestern Gondwana. Geological Society, London, Special Publications, 294(1): 257–278
    Grew E S, Yates M G, Wilson C J L. 2008. Aureoles of Pb(II)-enriched feldspar around monazite in paragneiss and anatectic pods of the Napier Complex, Enderby Land, East Antarctica: the roles of dissolution-reprecipitation and diffusion. Contributions to Mineralogy and Petrology, 155(3): 363–378. doi: 10.1007/s00410-007-0247-z
    Haeger C, Kaban M K. 2019. Decompensative gravity anomalies reveal the structure of the upper crust of Antarctica. Pure and Applied Geophysics, 176(10): 4401–4414. doi: 10.1007/s00024-019-02212-5
    Hall D J. 1990. Gulf Coast-East Coast magnetic anomaly I: Root of the main, crustal decollement for the Appalachian-Ouachita orogen. Geology, 18(9): 862–865. doi: 10.1130/0091-7613(1990)018<0862:GCECMA>2.3.CO;2
    Hansen S E, Kenyon L M, Graw J H, et al. 2016. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for tectonic origins. Journal of Geophysical Research: Solid Earth, 121(2): 812–825. doi: 10.1002/2015JB012325
    Hansen S E, Nyblade A A, Benoit M H. 2012. Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism. Earth and Planetary Science Letters, 319–320: 23–34
    Harley S L, Black L P. 1997. A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antarctic Science, 9(1): 74–91. doi: 10.1017/S0954102097000102
    Holbrook W S, Purdy G M, Sheridan R E, et al. 1994. Seismic structure of the U. S. Mid-Atlantic continental margin. Journal of Geophysical Research: Solid Earth, 99(B9): 17871–17891. doi: 10.1029/94JB00729
    Ishizuka H. 2008a. An overview of geological studies of JARE in the Napier Complex, Enderby Land, East Antarctica. Geological Society, London, Special Publications, 308(1): 121–138
    Ishizuka H. 2008b. Protoliths of the Napier Complex in Enderby Land, East Antarctica; an overview and implication for crustal formation of Archaean continents. Journal of Mineralogical and Petrological Sciences, 103(4): 218–225. doi: 10.2465/jmps.080328
    Ji Fei, Li Fei, Zhang Qiao, et al. 2019. Crustal density structure of the Antarctic continent from constrained 3-D gravity inversion. Chinese Journal of Geophysics (in Chinese), 62(3): 849–863
    Jin Yu, Jiang Xiaodian. 2002. Lithosphere Dynamics (in Chinese). Beijing: Science Press, 59–74
    Jokat W, Nogi Y, Leinweber V. 2010. New aeromagnetic data from the western Enderby Basin and consequences for Antarctic-India break-up. Geophysical Research Letters, 37(21): L21311
    Kanao M, Ishikawa M. 2004. Origins of the lower crustal reflectivity in the Lützow-Holm Complex, Enderby Land, East Antarctica. Earth, Planets and Space, 56(2): 151–162
    Kanao M, Suvorov V D, Yamashita M, et al. 2014. Crustal structure and tectonic evolution of Enderby Land, East Antarctica, as revealed by deep seismic surveys. Tectonophysics, 627: 38–47. doi: 10.1016/j.tecto.2014.04.014
    Król P, Kusiak M A, Dunkley D J, et al. 2020. Diversity of Archean crust in the eastern Tula Mountains, Napier Complex, East Antarctica. Gondwana Research, 82: 151–170. doi: 10.1016/j.gr.2019.12.014
    Kusiak M A, Dunkley D J, Wilde S A, et al. 2021. Eoarchean crust in East Antarctica: Extension from Enderby Land into Kemp Land. Gondwana Research, 93: 227–241. doi: 10.1016/j.gr.2020.12.031
    Laske G, Masters G, Ma Zhitu, et al. 2013. Update on CRUST 1.0: A 1-degree global model of Earth’s crust. In: EGU General Assembly Conference Abstracts. Vienna: EGU, 15
    Lawrence J F, Wiens D A, Nyblade A A, et al. 2006. Upper mantle thermal variations beneath the Transantarctic Mountains inferred from teleseismic S-wave attenuation. Geophysical Research Letters, 33(3): L03303
    Leitchenkov G L, Guseva Y B, Gandyukhin V V, et al. 2014. Structure of the Earth’s crust and tectonic evolution history of the Southern Indian Ocean (Antarctica). Geotectonics, 48(1): 5–23. doi: 10.1134/S001685211401004X
    Markl R G. 1974. Evidence for the breakup of eastern Gondwanaland by the early cretaceous. Nature, 251(5472): 196–200. doi: 10.1038/251196a0
    McElhinny M W. 1970. Formation of the Indian Ocean. Nature, 228(5275): 977–979. doi: 10.1038/228977a0
    Meert J G, Santosh M. 2017. The Columbia supercontinent revisited. Gondwana Research, 50: 67–83. doi: 10.1016/j.gr.2017.04.011
    Meyer B, Chulliat A, Saltus R. 2017. Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3). Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4522–4537
    Minshull T A. 2009. Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins. Comptes Rendus - Géoscience, 341(5): 382–393
    Ni S D, Helmberger D V. 2003. Seismological constraints on the South African superplume; could be the oldest distinct structure on earth. Earth and Planetary Science Letters, 206(1–2): 119–131
    O’Donnell J P, Nyblade A A. 2014. Antarctica’s hypsometry and crustal thickness: Implications for the origin of anomalous topography in East Antarctica. Earth and Planetary Science Letters, 388: 143–155. doi: 10.1016/j.jpgl.2013.11.051
    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    Rotstein Y, Munschy M, Bernard A. 2001. The Kerguelen Province revisited: additional constraints on the early development of the Southeast Indian Ocean. Marine Geophysical Researches, 22(2): 81–100. doi: 10.1023/A:1010345608833
    Scheinert M, Ferraccioli F, Schwabe J, et al. 2016. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophysical Research Letters, 43(2): 600–610. doi: 10.1002/2015GL067439
    Sjöberg L E. 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophysical Journal International, 179(3): 1527–1536. doi: 10.1111/j.1365-246X.2009.04397.x
    Stagg H, Colwell J B, Direen N G, et al. 2004. Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: insights from a regional data set. Marine Geophysical Researches, 25(3): 183–219
    Stagg H, Colwell J B, Borissova I, et al. 2006. The Bruce rise area, east Antarctica: Formation of a continental margin near the Greater India-Australia-Antarctica triple junction. Terra Antartica, 13(1–2): 3–22
    Stark C P, Stewart J, Ebinger C J. 2003. Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics. Journal of Geophysical Research: Solid Earth, 108(B12): 2558. doi: 10.1029/2001JB000609
    Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    Wang Qianshen, Teng Jiwen, Zhang Yongqian, et al. 2009. The crustal structure and gravity isostasy in the middle western Sichuan area. Chinese Journal of Geophysics (in Chinese), 52(2): 579–583
    Williams S E, Whittaker J M, Granot R, et al. 2013. Early India-Australia spreading history revealed by newly detected Mesozoic magnetic anomalies in the Perth Abyssal Plain. Journal of Geophysical Research: Solid Earth, 118(7): 3275–3284. doi: 10.1002/jgrb.50239
    Zeng Hualin. 2005. Gravity Field and Gravity Exploration (in Chinese). Beijing: Geological Publishing House, 93–100
    Zhang Xingyu, Chen Chao, Du Jinsong, et al. 2020. Characteristics of Vening Meinesz isostatic gravity anomalies in Tien Shan and surroundings and its dynamic significances. Chinese Journal of Geophysics (in Chinese), 63(10): 3791–3803. doi: 10.6038/cjg2020N0448
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (442) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return