Citation: | Qiulong Yang, Kunde Yang, Shunli Duan, Yuanliang Ma. Statistics of underwater ambient noise at high sea states arisen from typhoon out zones in the Philippine Sea and South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(7): 153-165. doi: 10.1007/s13131-022-1991-7 |
[1] |
Ashokan M, Latha G, Raguraman G. 2018. Ocean ambient noise off Chennai due to very severe cyclonic storm Vardah. Applied Acoustics, 140: 256–262. doi: 10.1016/j.apacoust.2018.06.008
|
[2] |
Asolkar P, Das A, Gajre S, et al. 2016. Tropical littoral ambient noise probability density function model based on sea surface temperature. The Journal of the Acoustical Society of America, 140(5): EL452–EL457. doi: 10.1121/1.4967524
|
[3] |
Asolkar P, Das A, Gajre S, et al. 2017. Comprehensive correlation of ocean ambient noise with sea surface parameters. Ocean Engineering, 138: 170–178. doi: 10.1016/j.oceaneng.2017.04.033
|
[4] |
Brooks L A, Gerstoft P. 2009. Green’s function approximation from cross-correlations of 20–100 Hz noise during a tropical storm. The Journal of the Acoustical Society of America, 125(2): 723–734. doi: 10.1121/1.3056563
|
[5] |
Cauchy P, Heywood K J, Merchant N D, et al. 2018. Wind speed measured from underwater gliders using passive acoustics. Journal of Atmospheric and Oceanic Technology, 35(12): 2305–2321. doi: 10.1175/JTECH-D-17-0209.1
|
[6] |
Chan H C, Chen Chifang. 2012. Underwater acoustic sensing applied to estimation of typhoon wind speed. International Journal of Remote Sensing, 33(23): 7398–7412. doi: 10.1080/01431161.2012.685984
|
[7] |
Chapman N R, Cornish J W. 1993. Wind dependence of deep ocean ambient noise at low frequencies. The Journal of the Acoustical Society of America, 93(2): 782–789. doi: 10.1121/1.405440
|
[8] |
D’Asaro E A, Black P G, Centurioni L R, et al. 2014. Impact of typhoons on the ocean in the Pacific. Bulletin of the American Meteorological Society, 95(9): 1405–1418. doi: 10.1175/BAMS-D-12-00104.1
|
[9] |
Farmer D M, Lemon D D. 1984. The influence of bubbles on ambient noise in the ocean at high wind speeds. Journal of Physical Oceanography, 14(11): 1762–1778. doi: 10.1175/1520-0485(1984)014<1762:TIOBOA>2.0.CO;2
|
[10] |
Farrell D M, Dall’Osto D R, Dahl P H. 2017. The background noise environment during the 2013 target and REverberation eXperiment. IEEE Journal of Oceanic Engineering, 42(4): 1088–1093. doi: 10.1109/JOE.2017.2721158
|
[11] |
Farrokhrooz M, Wage K E, Dzieciuch M A, et al. 2017. Vertical line array measurements of ambient noise in the North Pacific. The Journal of the Acoustical Society of America, 141(3): 1571–1581. doi: 10.1121/1.4976706
|
[12] |
Galindo-Romero M, Gavrilov A, Duncan A J. 2017. Fluctuations of the peak pressure level of man-made impulsive sound signals propagating in the ocean. The Journal of the Acoustical Society of America, 141(2): 661–668. doi: 10.1121/1.4974878
|
[13] |
Gaul R D, Knobles D P, Shooter J A, et al. 2007. Ambient noise analysis of deep-ocean measurements in the Northeast Pacific. IEEE Journal of Oceanic Engineering, 32(2): 497–512. doi: 10.1109/JOE.2007.891885
|
[14] |
Gerstoft P, Bromirski P D. 2016. “Weather bomb” induced seismic signals. Science, 353(6302): 869–870. doi: 10.1126/science.aag1616
|
[15] |
Jullien S, Marchesiello P, Menkes C E, et al. 2014. Ocean feedback to tropical cyclones: climatology and processes. Climate Dynamics, 43(9−10): 2831–2854. doi: 10.1007/s00382-014-2096-6
|
[16] |
Li Fenghua, Xu Dong, Wang Jingyan, et al. 2018. Observations of wind-generated noise by the tropical cyclone. The Journal of the Acoustical Society of America, 143(6): 3312–3324. doi: 10.1121/1.5039838
|
[17] |
Lin Jianmin, Lin Jian, Xu Min. 2017. Microseisms generated by super typhoon megi in the western Pacific Ocean. Journal of Geophysical Research, 122(12): 9518–9529. doi: 10.1002/2017JC013310
|
[18] |
Ma B B, Nystuen J A, Lien R C. 2005. Prediction of underwater sound levels from rain and wind. The Journal of the Acoustical Society of America, 117(6): 3555–3565. doi: 10.1121/1.1910283
|
[19] |
Ma B, Yang Y J. 2009. Detection and classification of typhoons using underwater acoustic sensors in the western Pacific Ocean. The Journal of the Acoustical Society of America, 125(4): 2619
|
[20] |
Marrett R, Chapman N R. 1990. Low-frequency ambient-noise measurements in the South Fiji Basin. IEEE Journal of Oceanic Engineering, 15(4): 311–315. doi: 10.1109/48.103526
|
[21] |
Newcomb J J, Wright A J, Kuczaj S, et al. 2004. Underwater ambient noise and sperm whale click detection during extreme wind speed conditions. AIP Conference Proceedings, 728(1): 296–303
|
[22] |
Nichols S M, Bradley D L. 2019. Use of noise correlation matrices to interpret ocean ambient noise. The Journal of the Acoustical Society of America, 145(4): 2337–2349. doi: 10.1121/1.5096846
|
[23] |
Porter M B. 2011. The BELLHOP manual and user’s guide: preliminary draft. La Jolla: Heat, Light, and Sound Research, Inc.
|
[24] |
Pun I F, Chang Y T, Lin I I, et al. 2011. Typhoon-ocean interaction in the western North Pacific: part 2. Oceanography, 24(4): 32–41. doi: 10.5670/oceanog.2011.92
|
[25] |
Reeder D B, Sheffield E S, Mach S M. 2011. Wind-generated ambient noise in a topographically isolated basin: a pre-industrial era proxy. The Journal of the Acoustical Society of America, 129(1): 64–73. doi: 10.1121/1.3514379
|
[26] |
Sanjana M C, Latha G, Thirunavukkarasu A. 2014. Ambient noise during rough weather and cyclones in the shallow Bay of Bengal. Chinese Journal of Oceanology and Limnology, 32(4): 921–932. doi: 10.1007/s00343-014-2238-2
|
[27] |
Širović A, Wiggins S M, Oleson E M. 2013. Ocean noise in the tropical and subtropical Pacific Ocean. The Journal of the Acoustical Society of America, 134(4): 2681–2689. doi: 10.1121/1.4820884
|
[28] |
Song Guoli, Guo Xinyi, Ma Li. 2019. α stable distribution model in ocean ambient noise. Acta Acustica, 44(2): 177–188
|
[29] |
Wang Jingyan, Li Fenghua. 2015. Preliminary study on underwater ambient noise generated by typhoons. Chinese Physics Letters, 32(4): 044301. doi: 10.1088/0256-307X/32/4/044301
|
[30] |
Wen Hongtao, Yang Yanming, Wang Ning, et al. 2016. Effects of typhoon “KAI-TAK” on deep ocean ambient noise in the South China Sea. Acta Acustica, 41(6): 804–812
|
[31] |
Wilson J D, Makris N C. 2006. Ocean acoustic hurricane classification. The Journal of the Acoustical Society of America, 119(1): 168–181. doi: 10.1121/1.2130961
|
[32] |
Wilson J D, Makris N C. 2008. Quantifying hurricane destructive power, wind speed, and air-sea material exchange with natural undersea sound. Geophysical Research Letters, 35(10): L10603
|
[33] |
Xu Delun, Wang Liping. 2011. Analysis of Ocean Random Data: Principles, Methods and Applications (in Chinese). Beijing: Higher Education Press
|
[34] |
Yang Qiulong, Yang Kunde, Cao Ran, et al. 2018a. Spatial vertical directionality and correlation of low-frequency ambient noise in deep ocean direct-arrival zones. Sensors, 18(2): 319. doi: 10.3390/s18020319
|
[35] |
Yang Qiulong, Yang Kunde, Duan Shunli. 2018b. A method for noise source levels inversion with underwater ambient noise generated by typhoon in Deep Ocean. Journal of Theoretical and Computational Acoustics, 26(2): 1850007. doi: 10.1142/S259172851850007X
|
[36] |
Yang Ming, Zhang Wei, Yu Hui, et al. 2014. An overview of the China Meteorological Administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology, 31(2): 287–301. doi: 10.1175/JTECH-D-12-00119.1
|
[37] |
Zhao Zhongxiang, D’Asaro E A, Nystuen J A. 2014. The sound of tropical cyclones. Journal of Physical Oceanography, 44(10): 2763–2778. doi: 10.1175/JPO-D-14-0040.1
|