Volume 41 Issue 5
May  2022
Turn off MathJax
Article Contents
Xueqing Yang, Guiyan Han, Chunyong Ma, Chuanchuan Cao, Jie Yang, Ge Chen. Satellite observed shape-based overall rotation—A new aspect in eddy kinematics[J]. Acta Oceanologica Sinica, 2022, 41(5): 183-194. doi: 10.1007/s13131-021-1970-4
Citation: Xueqing Yang, Guiyan Han, Chunyong Ma, Chuanchuan Cao, Jie Yang, Ge Chen. Satellite observed shape-based overall rotation—A new aspect in eddy kinematics[J]. Acta Oceanologica Sinica, 2022, 41(5): 183-194. doi: 10.1007/s13131-021-1970-4

Satellite observed shape-based overall rotation—A new aspect in eddy kinematics

doi: 10.1007/s13131-021-1970-4
Funds:  The National Natural Science Foundation of China under contract No. 42030406; the Wenhai Program of the S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2021WHZZB1501; the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2022QNLM050301-1.
More Information
  • Corresponding author: E-mail: gechen@ouc.edu.cn
  • Received Date: 2021-02-22
  • Accepted Date: 2021-10-02
  • Available Online: 2022-04-02
  • Publish Date: 2022-05-31
  • With the development of satellite altimetry technology, the resolution of sea-level anomaly (SLA) datasets is constantly improving. Current spatial resolution levels can reach a grid size of (1/4)° × (1/4)°, with daily measurements that span from 1993 to 2018, allowing for the precise identification and tracking of individual eddies. In the current study, in addition to the internal circulation and migration of eddies, a new aspect in eddy kinematics is revealed and investigated for the first time: shape-based overall eddy rotation (SOER), based on the intrinsic elliptical shape of eddies identified from a high-resolution SLA dataset. We found that eddies can maintain an elliptical shape and a slow and stable SOER during their migration process. The SOER speed was observed to be negatively correlated to eddy lifetime, and exhibited a dependence on latitude, decreasing from low- and high- to mid-latitudes. The SOER direction tended to be consistent with the direction of internal circulation, particularly for long-lived eddies. In addition, we identified a negative relationship between internal circulation speed and SOER speed while the migration speed was positively related to SOER speed. These findings further expand and improve eddy kinematics, which is of great significance for the future study of eddy dynamics.
  • loading
  • [1]
    Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [2]
    Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [3]
    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606
    [4]
    Chen Ge, Han Guiyan. 2019. Contrasting short-lived with long-lived mesoscale eddies in the global ocean. Journal of Geophysical Research: Oceans, 124(5): 3149–3167. doi: 10.1029/2019JC014983
    [5]
    Chen Ge, Han Guiyan, Yang Xueqing. 2019. On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sensing of Environment, 228: 75–89. doi: 10.1016/j.rse.2019.04.011
    [6]
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    [7]
    Dufau C, Orsztynowicz M, Dibarboure G, et al. 2016. Mesoscale resolution capability of altimetry: present and future. Journal of Geophysical Research: Oceans, 121(7): 4910–4927. doi: 10.1002/2015JC010904
    [8]
    Early J J, Samelson R M, Chelton D B. 2011. The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41(8): 1535–1555. doi: 10.1175/2011JPO4601.1
    [9]
    Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2(1): 150028. doi: 10.1038/sdata.2015.28
    [10]
    Fernandes A M. 2009. Study on the automatic recognition of oceanic eddies in satellite images by ellipse center detection—the Iberian coast case. IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2478–2491. doi: 10.1109/TGRS.2009.2014155
    [11]
    Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
    [12]
    Fu L L, Chelton D B, Le Traon P Y, et al. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14–25. doi: 10.5670/oceanog.2010.02
    [13]
    Gruber N, Lachkar Z, Frenzel H, et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geoscience, 4(11): 787–792. doi: 10.1038/ngeo1273
    [14]
    Jayne S R, Marotzke J. 2002. The oceanic eddy heat transport. Journal of Physical Oceanography, 32(12): 3328–3345. doi: 10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2
    [15]
    Le Vu B, Stegner A, Arsouze T. 2018. Angular Momentum Eddy Detection and tracking Algorithm (AMEDA) and its application to coastal eddy formation. Journal of Atmospheric and Oceanic Technology, 35(4): 739–762. doi: 10.1175/JTECH-D-17-0010.1
    [16]
    Liu Yingjie, Chen Ge, Sun Miao, et al. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2743–2754. doi: 10.1175/JTECH-D-16-0033.1
    [17]
    Mason E, Pascual A, McWilliams J C. 2014. A new sea surface height–based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1181–1188. doi: 10.1175/JTECH-D-14-00019.1
    [18]
    Sun Miao, Tian Fenglin, Liu Yingjie, et al. 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sensing, 9(3): 206. doi: 10.3390/rs9030206
    [19]
    Tamarin T, Maddison J R, Heifetz E, et al. 2016. A geometric interpretation of eddy Reynolds stresses in barotropic ocean jets. Journal of Physical Oceanography, 46(8): 2285–2307. doi: 10.1175/JPO-D-15-0139.1
    [20]
    Waterman S, Lilly J M. 2015. Geometric decomposition of eddy feedbacks in barotropic systems. Journal of Physical Oceanography, 45(4): 1009–1024. doi: 10.1175/JPO-D-14-0177.1
    [21]
    Yi Jiawei, Liu Zhang, Du Yunyan, et al. 2014. A Gaussian-surface-based approach to identifying oceanic multi-eddy structures from satellite altimeter datasets. In: Proceedings of the 22nd International Conference on Geoinformatics. Kaohsiung, China: IEEE,1–5
    [22]
    Zhang Zhengguang, Qiu Bo, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nature Communications, 10(1): 2838. doi: 10.1038/s41467-019-10883-w
    [23]
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (250) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return