Volume 41 Issue 5
May  2022
Turn off MathJax
Article Contents
Chunjian Sun, Xidong Wang, Anmin Zhang, Lianxin Zhang, Caixia Shao, Guosong Wang. Statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean[J]. Acta Oceanologica Sinica, 2022, 41(5): 27-40. doi: 10.1007/s13131-021-1969-x
Citation: Chunjian Sun, Xidong Wang, Anmin Zhang, Lianxin Zhang, Caixia Shao, Guosong Wang. Statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean[J]. Acta Oceanologica Sinica, 2022, 41(5): 27-40. doi: 10.1007/s13131-021-1969-x

Statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean

doi: 10.1007/s13131-021-1969-x
Funds:  The National Key Research and Development Program of China under contract No. 2019YFC1510000; the National Natural Science Foundation of China under contract Nos 41976019 and 41906009.
More Information
  • Corresponding author: E˗mail: anmin.zhang@tju.edu.cn
  • Received Date: 2021-06-10
  • Accepted Date: 2021-09-30
  • Available Online: 2022-03-29
  • Publish Date: 2022-05-31
  • The statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean are investigated by adopting multi-sensor satellite data from 1993 to 2019. In the Arabian Sea (AS), seasonal variation of eddy characteristics is remarkable, while the intraseasonal variability caused by planetary waves is crucial in the Bay of Bengal (BOB). Seasonal variation of the eddy kinetic energy (EKE) is distinct along the west boundary of AS, especially in the Somali Current region. In the BOB, larger EKE occurs at the northwest basin from March to May, to the east of Sri Lanka from June to September, and along the east coast of India from November to December. The wind stress work (WW) is further studied to figure out the direct influence of wind forcing on EKE. The WW exerts positive effects on EKE along the west boundary of AS and in the south of India/Sri Lanka during the two monsoon seasons. Besides, the WW also has impact on EKE along the east coast of India in November and December. Eventually, we investigate the characteristics and the driving mechanisms of long lifespan eddies. In the AS, long lifespan anti-cyclonic eddies (AEs) mainly generate in the Socotra, the West Indian Coastal Current and the East Arabian Current regions, while cyclonic eddies (CEs) are concentrated in the northwest region. In the BOB, long lifespan AEs mostly form near the west of Myanmar, while CEs are accumulated at the north and northwest basin. The instabilities caused by Rossby waves, coastal Kelvin waves, seasonal currents, together with wind stress forcing exert enormous efforts on the generation and evolution of these eddies.
  • loading
  • [1]
    Akuetevi C Q C, Barnier B, Verron J, et al. 2016. Interactions between the Somali Current eddies during the summer monsoon: Insights from a numerical study. Ocean Science, 12(1): 185–205. doi: 10.5194/os-12-185-2016
    Al Saafani M A, Shenoi S S C, Shankar D, et al. 2007. Westward movement of eddies into the Gulf of Aden from the Arabian Sea. Journal of Geophysical Research: Oceans, 112(C11): C11004. doi: 10.1029/2006JC004020
    Atlas R, Hoffman R N, Ardizzone J, et al. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2): 157–174. doi: 10.1175/2010BAMS2946.1
    Babu M T, Sarma Y V B, Murty V S N, et al. 2003. On the circulation in the Bay of Bengal during northern spring inter-monsoon (March–April 1987). Deep Sea Research Part II: Topical Studies in Oceanography, 50(5): 855–865. doi: 10.1016/S0967-0645(02)00609-4
    Beal L M, Donohue K A. 2013. The Great Whirl: Observations of its seasonal development and interannual variability. Journal of Geophysical Research: Oceans, 118(1): 1–13. doi: 10.1029/2012JC008198
    Beal L M, Hormann V, Lumpkin R, et al. 2013. The response of the surface circulation of the Arabian Sea to monsoonal forcing. Journal of Physical Oceanography, 43(9): 2008–2022. doi: 10.1175/JPO-D-13-033.1
    Bruce J G, Johnson D R, Kindle J C. 1994. Evidence for eddy formation in the eastern Arabian Sea during the northeast monsoon. Journal of Geophysical Research: Oceans, 99(C4): 7651–7664. doi: 10.1029/94JC00035
    Cai Yi, Li Hai. 2011. Study on the relationship between ENSO and tropical Indian Ocean temperature. Marine Science Bulletin, 13(1): 1–9
    Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography, 83(1–4): 117–123. doi: 10.1016/j.pocean.2009.07.012
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    Chaigneau A, Pizarro O. 2005. Eddy characteristics in the eastern South Pacific. Journal of Geophysical Research: Oceans, 110(C6): C06005
    Chatterjee A, Shankar D, McCreary J P, et al. 2017. Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal. Journal of Geophysical Research: Oceans, 122(4): 3200–3218. doi: 10.1002/2016JC012300
    Chelton D. 2013. Mesoscale eddy effects. Nature Geoscience, 6(8): 594–595. doi: 10.1038/ngeo1906
    Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    Chen Jiajia, Cheng Xuhua, Chen Xiao. 2019. Eddy generation mechanism in the eastern South China Sea. Acta Oceanologica Sinica, 38(4): 20–28. doi: 10.1007/s13131-019-1409-3
    Chen Gengxin, Li Yuanlong, Xie Qiang, et al. 2018. Origins of eddy kinetic energy in the Bay of Bengal. Journal of Geophysical Research: Oceans, 123(3): 2097–2115. doi: 10.1002/2017JC013455
    Chen Gengxin, Wang Dongxiao, Hou Yijun. 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Continental Shelf Research, 47: 178–185. doi: 10.1016/j.csr.2012.07.011
    Cheng Xuhua, McCreary J P, Qiu Bo, et al. 2018. Dynamics of eddy generation in the Central Bay of Bengal. Journal of Geophysical Research: Oceans, 123(9): 6861–6875. doi: 10.1029/2018JC014100
    Cheng Xuhua, Xie Shangping, McCreary J P, et al. 2013. Intraseasonal variability of sea surface height in the Bay of Bengal. Journal of Geophysical Research: Oceans, 118(2): 816–830. doi: 10.1002/jgrc.20075
    Cui Wei, Yang Jungang, Ma Yi. 2016. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22–year altimetry data. Acta Oceanologica Sinica, 35(11): 16–27. doi: 10.1007/s13131-016-0945-3
    Dandapat S, Chakraborty A. 2016. Mesoscale eddies in the western Bay of Bengal as observed from Satellite Altimetry in 1993–2014: Statistical Characteristics, variability and three-dimensional properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5044–5054. doi: 10.1109/JSTARS.2016.2585179
    Dong Di, Brandt P, Chang Ping, et al. 2017. Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813. doi: 10.1002/2017JC013303
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Journal of Geophysical Research: Oceans, 105(C8): 19477–19498. doi: 10.1029/2000JC900063
    Fischer J, Schott F, Stramma L. 1996. Currents and transports of the Great Whirl-Socotra Gyre system during the summer monsoon, August 1993. Journal of Geophysical Research: Oceans, 101(C2): 3573–3587. doi: 10.1029/95JC03617
    Fratantoni D M, Bower A S, Johns W E, et al. 2006. Somali Current rings in the eastern Gulf of Aden. Journal of Geophysical Research:Oceans, 111(C9): C09039
    Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
    Geng Wu, Xie Qiang, Chen Gengxin, et al. 2016. Numerical study on the eddy−mean flow interaction between a cyclonic eddy and Kuroshio. Journal of Oceanography, 72(5): 727–745. doi: 10.1007/s10872-016-0366-0
    Han Weiqing, McCreary J P Jr. 2001. Modeling salinity distributions in the Indian Ocean. Journal of Geophysical Research: Oceans, 106(C1): 859–877. doi: 10.1029/2000JC000316
    Hu Zifeng, Tan Yehui, Song Xingyu, et al. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring inter-monsoon period. Acta Oceanologica Sinica, 33(3): 118–128. doi: 10.1007/s13131-014-0431-8
    Ivchenko V O, Tréguier A M, Best S E. 1997. A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model. Journal of Physical Oceanography, 27(1): 5–22. doi: 10.1175/1520-0485(1997)027<0005:AKEBAI>2.0.CO;2
    Li Jiaxun, Zhang Ren, Liu Chenzhao, et al. 2012. Modeling of ocean mesoscale eddy and its application in the underwater acoustic propagation. Marina Science Bulletin, 14(1): 1–15
    Ma Jing, Xu Haiming, Dong Changming. 2016. Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension. Tellus A: Dynamic Meteorology and Oceanography, 68(1): 31563. doi: 10.3402/tellusa.v68.31563
    Mason P J, Sykes R I. 1978. On the interaction of topography and Ekman boundary layer pumping in a stratified atmosphere. Quarterly Journal of the Royal Meteorological Society, 104(440): 475–490. doi: 10.1002/qj.49710444018
    Morrow R, Birol F, Griffin D, et al. 2004. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophysical Research Letters, 31(24): L24311. doi: 10.1029/2004GL020974
    Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Research and Oceanographic Abstracts, 17(3): 445–454. doi: 10.1016/0011-7471(70)90059-8
    Penven P, Echevin V, Pasapera J, et al. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. Journal of Geophysical Research: Oceans, 110(C10): C10021. doi: 10.1029/2005JC002945
    Prasad T G, Ikeda M. 2001. Spring evolution of Arabian Sea high in the Indian Ocean. Journal of Geophysical Research: Oceans, 106(C12): 31085–31098. doi: 10.1029/2000JC000314
    Rao R R, Girish Kumar M S, Ravichandran M, et al. 2010. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep-Sea Research Part I: Oceanographic Research Papers, 57(1): 1–13. doi: 10.1016/j.dsr.2009.10.008
    Sadarjoen I A, Post F H. 1999. Geometric methods for vortex extraction. In: Data Visualization’99. Vienna: Springer, 53–62
    Sadarjoen I A, Post F H. 2000. Detection, quantification, and tracking of vortices using streamline geometry. Computers & Graphics, 24(3): 333–341
    Schott F A, McCreary J P. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0
    Shankar D, Shetye S R. 1997. On the dynamics of the Lakshadweep high and low in the southeastern Arabian Sea. Journal of Geophysical Research: Oceans, 102(C6): 12551–12562. doi: 10.1029/97JC00465
    Shankar D, Vinayachandran P N, Unnikrishnan A S. 2002. The monsoon currents in the North Indian Ocean. Progress in Oceanography, 52(1): 63–120. doi: 10.1016/S0079-6611(02)00024-1
    Sreenivas P, Gnanaseelan C, Prasad K V S R. 2012. Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal. Global and Planetary Change, 80–81: 215–225
    Sun Jia, Wang Guihua, Xiong Xuejun, et al. 2020. Impact of warm mesoscale eddy on tropical cyclone intensity. Acta Oceanologica Sinica, 39(8): 1–13. doi: 10.1007/s13131-020-1617-x
    Suresh I, Vialard J, Izumo T, et al. 2016. Dominant role of winds near Sri Lanka in driving seasonal sea level variations along the west coast of India. Geophysical Research Letters, 43(13): 7028–7035. doi: 10.1002/2016GL069976
    Suresh I, Vialard J, Lengaigne M, et al. 2013. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide. Geophysical Research Letters, 40(21): 5740–5744. doi: 10.1002/2013GL058312
    Tong Kai, Liu Jinfang, Yan Ming, et al. 2003. Space-time characteristic analysis of wind field over the south Indian Ocean. Marine Science Bulletin, 5(2): 5–13
    Trott C B, Subrahmanyam B, Chaigneau A, et al. 2018. Eddy tracking in the northwestern Indian Ocean during southwest monsoon regimes. Geophysical Research Letters, 45(13): 6594–6603. doi: 10.1029/2018GL078381
    Valsala V K, Rao R R. 2016. Coastal Kelvin waves and dynamics of Gulf of Aden eddies. Deep-Sea Research Part I: Oceanographic Research Papers, 116: 174–186. doi: 10.1016/j.dsr.2016.08.003
    Vic C, Roullet G, Carton X, et al. 2014. Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS. Journal of Geophysical Research: Oceans, 119(9): 6422–6443. doi: 10.1002/2014JC009857
    Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2−3): 273–294. doi: 10.1016/0167-2789(91)90088-Q
    Wentz F J, Scott J, Hoffman R, et al. 2015. Remote sensing systems cross-calibrated multi-platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, version 2.0. Santa Rosa, CA: Remote Sensing Systems
    Willett C S, Leben R R, Lavín M F. 2006. Eddies and tropical instability waves in the eastern tropical Pacific: A review. Progress in Oceanography, 69(2−4): 218–238. doi: 10.1016/j.pocean.2006.03.010
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750. doi: 10.1002/2015JC011130
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6(1): 24349. doi: 10.1038/srep24349
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014a. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    Zhang Zhiwei, Zhong Yisen, Tian Jiwein, et al. 2014b. Estimation of eddy heat transport in the global ocean from Argo data. Acta Oceanologica Sinica, 33(1): 42–47. doi: 10.1007/s13131-014-0421-x
    Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5): 519–531. doi: 10.1007/s10236-013-0612-6
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (191) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint