Volume 41 Issue 5
May  2022
Turn off MathJax
Article Contents
Xuanliang Ji, Fei Chai, Peng Xiu, Guimei Liu. Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017[J]. Acta Oceanologica Sinica, 2022, 41(5): 90-98. doi: 10.1007/s13131-021-1953-5
Citation: Xuanliang Ji, Fei Chai, Peng Xiu, Guimei Liu. Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017[J]. Acta Oceanologica Sinica, 2022, 41(5): 90-98. doi: 10.1007/s13131-021-1953-5

Long-term trend of oceanic surface carbon in the Northwest Pacific from 1958 to 2017

doi: 10.1007/s13131-021-1953-5
Funds:  The National Key Research and Development Program of China under contract No. 2016YFC1401605; the Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2020SP008; the Open Fund of Marine Telemetry Technology Innovation Center of the Ministry of Natural Resources; the National Natural Science Foundation of China under contract No. 41730536; the Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources under contract No. 201901001.
More Information
  • Corresponding author: fchai@sio.org.cn
  • Received Date: 2021-05-24
  • Accepted Date: 2021-07-08
  • Available Online: 2022-03-16
  • Publish Date: 2022-05-31
  • Contrasting decrease and increase trends of sea surface temperature (SST) have been documented in the western Subarctic (WSA) and the rest of the Northwest Pacific (NWP) from 1958 to 2017, respectively. Consequently, more (less) total carbon dioxide (TCO2) due to ocean cooling (warming) is transported to the surface, which leads to increase (decrease) of oceanic surface partial pressure of carbon dioxide (pCO2). With the combined influence of the rising atmospheric carbon dioxide (CO2) level and changing ocean conditions, a prominent increase in oceanic surface pCO2 occurred with different rates of increase in summer and winter in the NWP. The oceanic surface pCO2 is mainly controlled by the variation of TCO2 at the interdecadal timescale and by SST at the seasonal timescale. Our results also indicate that increasing SST tends to strengthen the capability of ocean in absorbing anthropogenic CO2 in the NWP, while ocean’s uptaking ability is weakened in the cooling area of the WSA.
  • loading
  • [1]
    Arruda R, Calil P H R, Bianchi A A, et al. 2015. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: A modeling study. Biogeosciences, 12(19): 5793–5809. doi: 10.5194/bg-12-5793-2015
    [2]
    Bakker D C E, Pfeil B, Landa C S, et al. 2016. A multi-decade record of high-quality fCO₂ data in version 3 of the Surface Ocean CO₂ Atlas (SOCAT). Earth System Science Data, 8(2): 383–413. doi: 10.5194/essd-8-383-2016
    [3]
    Dabrowski T, Lyons K, Berry A, et al. 2014. An operational biogeochemical model of the North-East Atlantic: model description and skill assessment. Journal of Marine Systems, 129: 350–367. doi: 10.1016/j.jmarsys.2013.08.001
    [4]
    Fujii M, Chai Fei, Shi Lei, et al. 2009. Seasonal and interannual variability of oceanic carbon cycling in the western and central tropical-subtropical Pacific: A physical-biogeochemical modeling study. Journal of Oceanography, 65(5): 689–701. doi: 10.1007/s10872-009-0060-6
    [5]
    Kalnay E, Kanamitsu R, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [6]
    Khatiwala S, Tanhua T, Fletcher S M, et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences, 10(4): 2169–2191. doi: 10.5194/bg-10-2169-2013
    [7]
    Le Quéré C, Andrew R M, Friedlingstein P, et al. 2018. Global carbon budget 2017. Earth System Science Data, 10(1): 405–448. doi: 10.5194/essd-10-405-2018
    [8]
    Liu Guimei, Chai Fei. 2009a. Seasonal and interannual variability of primary and export production in the South China Sea: A three-dimensional physical–biogeochemical model study. ICES Journal of Marine Science, 66(2): 420–431. doi: 10.1093/icesjms/fsn219
    [9]
    Liu Guimei, Chai Fei. 2009b. Seasonal and interannual variation of physical and biological processes during 1994–2001 in the Sea of Japan/East Sea: A three-dimensional physical-biogeochemical modeling study. Journal of Marine Systems, 78(2): 265–277. doi: 10.1016/j.jmarsys.2009.02.011
    [10]
    McNeil B I, Metzl N, Key R M, et al. 2007. An empirical estimate of the Southern Ocean air-sea CO2 flux. Global Biogeochemical Cycles, 21(3): GB3011. doi: 10.1029/2007GB002991
    [11]
    Najjar R G, Orr J C. 1999. Biotic how-to. , Ocean Carbon-cycle Model Intercomparison Project (OCMIP). Revision 1.7. http://www.ipsl.jussieu.fr/OCMIP/phase2/simulations/Biotic/HOWTO-Biotic.html [1999-10-05/2021-4-20]
    [12]
    Nakano H, Tsujino H, Hirabara M, et al. 2011. Uptake mechanism of anthropogenic CO2 in the Kuroshio Extension region in an ocean general circulation model. Journal of Oceanography, 67(6): 765–783. doi: 10.1007/s10872-011-0075-7
    [13]
    O’Reilly C H, Zanna L. 2018. The signature of oceanic processes in decadal extratropical SST anomalies. Geophysical Research Letters, 45(15): 7719–7730. doi: 10.1029/2018GL079077
    [14]
    Ogawa K, Usui T, Takatani S, et al. 2006. Shipboard measurements of atmospheric and surface seawater pCO2 in the North Pacific carried out from January 1999 to October 2000 on the voluntary observation ship MS Alligator Liberty. Papers in Meteorology and Geophysics, 57: 37–46. doi: 10.2467/mripapers.57.37
    [15]
    Palevsky H I, Quay P D, Lockwood D E, et al. 2016. The annual cycle of gross primary production, net community production, and export efficiency across the North Pacific Ocean. Global Biogeochemical Cycles, 30(2): 361–380. doi: 10.1002/2015GB005318
    [16]
    Qiu Bo. 2001. Kuroshio and Oyashio currents. In: Steele J H, Turekian K K, Thorpe S A, eds. Encyclopedia of Ocean Sciences. London: Academic Press, 1413–1425. doi: 10.1006/rwos.2001.0350
    [17]
    Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496. doi: 10.1175/2007JCLI1824.1
    [18]
    Rodgers K B, Sarmiento J L, Aumont O, et al. 2008. A wintertime uptake window for anthropogenic CO2 in the North Pacific. Global Biogeochemical Cycles, 22(2): GB2020. doi: 10.1029/2006GB002920
    [19]
    Sabine C L, Hankin S, Koyuk H, et al. 2013. Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth System Science Data, 5(1): 145–153. doi: 10.5194/essd-5-145-2013
    [20]
    Seager R, Kushnir Y, Naik N H, et al. 2001. Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. Journal of Climate, 14(22): 4249–4265. doi: 10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2
    [21]
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    [22]
    Stow C A, Jolliff J, McGillicuddy D J Jr, et al. 2009. Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems, 76: 4–15,
    [23]
    Sutton A J, Wanninkhof R, Sabine C L, et al. 2017. Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean. Geophysical Research Letters, 44(11): 5627–5636. doi: 10.1002/2017GL073814
    [24]
    Takahashi T, Olafsson J, Goddard J G, et al. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles, 7(4): 843–878. doi: 10.1029/93GB02263
    [25]
    Takahashi T, Sutherland S C, Feely R A, et al. 2006. Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations. Journal of Geophysical Research: Oceans, 111(C7): C07S05. doi: 10.1029/2005JC003074
    [26]
    Takahashi T, Sutherland S C, Sweeney C, et al. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II:Topical Studies in Oceanography, 49(9-10): 1601–1622. doi: 10.1016/S0967-0645(02)00003-6
    [27]
    Takahashi T, Sutherland S C, Wanninkhof R, et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8−10): 554–577. doi: 10.1016/j.dsr2.2008.12.009
    [28]
    Takamura T R, Inoue H Y, Midorikawa T, et al. 2010. Seasonal and inter-annual variations in pCO2 sea and air-sea CO2 fluxes in mid-latitudes of the western and eastern North Pacific during 1999–2006: Recent results utilizing voluntary observation ships. Journal of the Meteorological Society of Japan: Ser II, 88(6): 883–898,doi: 10.2151/jmsj.2010-602
    [29]
    Wang Xiaochun, Chao Yi. 2004. Simulated sea surface salinity variability in the tropical Pacific. Geophysical Research Letters, 31(2): L02302. doi: 10.1029/2003GL018146
    [30]
    Xiu Peng, Chai Fei. 2012. Spatial and temporal variability in phytoplankton carbon, chlorophyll, and nitrogen in the North Pacific. Journal of Geophysical Research: Oceans, 117(C11): C11023. doi: 10.1029/2012JC008067
    [31]
    Xiu Peng, Chai Fei. 2014a. Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Progress in Oceanography, 122: 30–53. doi: 10.1016/j.pocean.2013.11.008
    [32]
    Xiu Peng, Chai Fei. 2014b. Variability of oceanic carbon cycle in the North Pacific from seasonal to decadal scales. Journal of Geophysical Research: Oceans, 119(8): 5270–5288. doi: 10.1002/2013JC009505
    [33]
    Yasuda I. 2003. Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59(4): 389–402. doi: 10.1023/A:1025580313836
    [34]
    Yoshikawa-Inoue H, Matsueda H, Ishii M, et al. 1995. Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific, 1984–1993. Tellus B: Chemical and Physical Meteorology, 47(4): 391–413. doi: 10.3402/tellusb.v47i4.16057
    [35]
    Yoshikawa-Inoue H, Midorikawa T, Takamura T R. 2014. Temporal and spatial variations in carbonate system and air-sea CO2 flux in the Kuroshio and Kuroshio extension. In: Uematsu M, Yokouchi Y, Watanabe Y W, et al., eds. Western Pacific Air-Sea Interaction Study. Tokyo, Japan: TERRAPUB, 151–161. doi: 10.5047/w-pass.a02.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (196) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return