Volume 41 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Ying Zhang, Lei Meng, Liming Wei, Bingjian Liu, Liqin Liu, Zhenming Lü, Yang Gao, Li Gong. Comparative mitochondrial genome analysis of Sesarmidae and its phylogenetic implications[J]. Acta Oceanologica Sinica, 2022, 41(8): 62-73. doi: 10.1007/s13131-021-1911-2
Citation: Ying Zhang, Lei Meng, Liming Wei, Bingjian Liu, Liqin Liu, Zhenming Lü, Yang Gao, Li Gong. Comparative mitochondrial genome analysis of Sesarmidae and its phylogenetic implications[J]. Acta Oceanologica Sinica, 2022, 41(8): 62-73. doi: 10.1007/s13131-021-1911-2

Comparative mitochondrial genome analysis of Sesarmidae and its phylogenetic implications

doi: 10.1007/s13131-021-1911-2
Funds:  The National Natural Science Foundation of China under contract No. 41706176; the Basic Scientific Research Operating Expenses of Zhejiang Provincial Universities under contract No. 2019J00022.
More Information
  • Corresponding author: E-mail address: gongli1027@163.com, gongli@zjou.edu.cn
  • Received Date: 2021-04-20
  • Accepted Date: 2021-08-06
  • Available Online: 2022-07-20
  • Publish Date: 2022-08-15
  • Here, we sequenced the complete mitogenome of Parasesarma eumolpe (Brachyura: Grapsoidea: Sesarmidae) for the first time. The characteristics of this newly sequenced mitogenome were described and compared with other Sesarmidae species. The 15 646-bp mitogenome contains 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A-T rich region. All of the PCGs are initiated by the start codon ATN and terminated by the standard TAN codon or an incomplete T. The pairwise Ka/Ks ratio analysis shows that all 13 PCGs are under purifying selection, whereas the ATP8 gene is an outlier, with pairwise comparison values ranging from neutral selection (0.000) to positive selection (1.039). The gene arrangement of P. eumolpe compared with ancestral Decapoda shows the translocation of two tRNAs (tRNA-His and tRNA-Gln), which is identical to other Sesarmidae species. Phylogenetic analyses show that all Sesarmidae species are placed into one group, and the polyphyly of Eriphioidea, Ocypodoidea, and Grapsoidea is well supported. The relationship between gaps in the QIM region and the phylogeny of Sesarmidae is analyzed. It is obvious that both the G5 (the gap between Q and I) and G6 (the gap between I and M) decrease progressively with the evolution process. These results will help to better understand the genomic evolution within Sesarmidae and provide insights into the phylogeny of Brachyura.
  • loading
  • [1]
    Arndt A, Smith M J. 1998. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Molecular Biology and Evolution, 15(8): 1009–1016. doi: 10.1093/oxfordjournals.molbev.a025999
    Basso A, Babbucci M, Pauletto M, et al. 2017. The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura. Scientific Reports, 7(1): 4096. doi: 10.1038/s41598-017-04168-9
    Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2): 573–580. doi: 10.1093/nar/27.2.573
    Bernt M, Donath A, Jühling F, et al. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2): 313–319. doi: 10.1016/j.ympev.2012.08.023
    Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780. doi: 10.1093/nar/27.8.1767
    Boussau B, Walton Z, Delgado J A, et al. 2014. Strepsiptera, phylogenomics and the long branch attraction problem. PLoS ONE, 9(10): e107709. doi: 10.1371/journal.pone.0107709
    Cantatore P, Gadaleta M N, Roberti M, et al. 1987. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature, 329(6142): 853–855. doi: 10.1038/329853a0
    Chen Jianqin, Xing Yuhui, Yao Wenjia, et al. 2018. Characterization of four new mitogenomes from Ocypodoidea & Grapsoidea, and phylomitogenomic insights into thoracotreme evolution. Gene, 675: 27–35. doi: 10.1016/j.gene.2018.06.088
    Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4): e18
    Evans N. 2018. Molecular phylogenetics of swimming crabs (Portunoidea Rafinesque, 1815) supports a revised family-level classification and suggests a single derived origin of symbiotic taxa. PeerJ, 6: e4260. doi: 10.7717/peerj.4260
    Gillikin D P, Schubart C D. 2004. Ecology and systematics of mangrove crabs of the genus Perisesarma (Crustacea: Brachyura: Sesarmidae) from East Africa. Zoological Journal of the Linnean Society, 141(3): 435–445. doi: 10.1111/j.1096-3642.2004.00125.x
    Gong Li, Jiang Hui, Zhu Kehua, et al. 2019. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura. Gene, 695: 75–83. doi: 10.1016/j.gene.2019.01.035
    Gong Li, Lu Xinting, Luo Hairong, et al. 2020a. Novel gene rearrangement pattern in Cynoglossus melampetalus mitochondrial genome: new gene order in genus Cynoglossus (Pleuronectiformes: Cynoglossidae). International Journal of Biological Macromolecules, 149: 1232–1240. doi: 10.1016/j.ijbiomac.2020.02.017
    Gong Li, Lu Xinting, Wang Zhifu, et al. 2020b. Novel gene rearrangement in the mitochondrial genome of Coenobita brevimanus (Anomura: Coenobitidae) and phylogenetic implications for Anomura. Genomics, 112(2): 1804–1812. doi: 10.1016/j.ygeno.2019.10.012
    Gong Li, Shi Wei, Si Lizhen, et al. 2013. Rearrangement of mitochondrial genome in fishes. Zoological Research, 34(6): 666–673
    Guo Xinhong, Liu Shaojun, Liu Yun. 2003. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture, 224(1–4): 25–38. doi: 10.1016/S0044-8486(03)00168-6
    Gyllensten U, Wharton D, Josefsson A, et al. 1991. Paternal inheritance of mitochondrial DNA in mice. Nature, 352(6332): 255–257. doi: 10.1038/352255a0
    Hebert P D N, Ratnasingham S, De Waard J R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(S1): S96–S99
    Kumar S, Stecher G, Li M, et al. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547–1549. doi: 10.1093/molbev/msy096
    Kumazawa Y, Nishida M. 1995. Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Molecular Biology and Evolution, 12(5): 759–772
    Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947–2948. doi: 10.1093/bioinformatics/btm404
    Lavrov D V, Boore J L, Brown W M. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Molecular Biology and Evolution, 19(2): 163–169. doi: 10.1093/oxfordjournals.molbev.a004068
    Lee S Y. 1998. Ecological role of grapsid crabs in mangrove ecosystems: a review. Marine and Freshwater Research, 49(4): 335–343. doi: 10.1071/MF97179
    Liu Qiuning, Xin Zhaozhe, Zhu Xiaoyu, et al. 2017. A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome. Biochemical and Biophysical Research Communications, 489(2): 149–154. doi: 10.1016/j.bbrc.2017.05.115
    Lowe T M, Chan P P. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44(W1): W54–W57. doi: 10.1093/nar/gkw413
    Lu Xinting, Gong Li, Zhang Ying, et al. 2020. The complete mitochondrial genome of Calappa bilineata: the first representative from the family Calappidae and its phylogenetic position within Brachyura. Genomics, 112(3): 2516–2523. doi: 10.1016/j.ygeno.2020.02.003
    Lü Zhenming, Zhu Kehua, Jiang Hui, et al. 2019. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. International Journal of Biological Macromolecules, 135: 609–618. doi: 10.1016/j.ijbiomac.2019.05.139
    Luo Hairong, Kong Xiaoyu, Chen Shixi, et al. 2019. Mechanisms of gene rearrangement in 13 bothids based on comparison with a newly completed mitogenome of the threespot flounder, Grammatobothus polyophthalmus (Pleuronectiformes: Bothidae). BMC Genomics, 20(1): 792. doi: 10.1186/s12864-019-6128-9
    Ma Kayan, Qin Jing, Lin Chia-Wei, et al. 2019. Phylogenomic analyses of brachyuran crabs support early divergence of primary freshwater crabs. Molecular Phylogenetics and Evolution, 135: 62–66. doi: 10.1016/j.ympev.2019.02.001
    Ma Zhihong, Yang Xuefen, Bercsenyi M, et al. 2015. Comparative mitogenomics of the genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) revealed conserved gene rearrangement and high sequence variations. International Journal of Molecular Sciences, 16(10): 25031–25049. doi: 10.3390/ijms161025031
    Macey J R, Larson A, Ananjeva N B, et al. 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14(1): 91–104. doi: 10.1093/oxfordjournals.molbev.a025706
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17(1): 10–12
    McKnight M L, Shaffer H B. 1997. Large, rapidly evolving intergenic spacers in the mitochondrial DNA of the salamander family Ambystomatidae (Amphibia: Caudata). Molecular Biology and Evolution, 14(11): 1167–1176. doi: 10.1093/oxfordjournals.molbev.a025726
    Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292. doi: 10.1146/annurev.es.18.110187.001413
    Nguyen L T, Schmidt H A, Von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268–274. doi: 10.1093/molbev/msu300
    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470–474. doi: 10.1038/290470a0
    Perna N T, Kocher T D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41(3): 353–358. doi: 10.1007/BF01215182
    Philippe H. 2000. Opinion: long branch attraction and protist phylogeny. Protist, 151(4): 307–316. doi: 10.1078/S1434-4610(04)70029-2
    Poulton J, Deadman M E, Bindoff L, et al. 1993. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human Molecular Genetics, 2(1): 23–30. doi: 10.1093/hmg/2.1.23
    Ray D A, Densmore L. 2002. The crocodilian mitochondrial control region: general structure, conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294(4): 334–345. doi: 10.1002/jez.10198
    Ren Lipin, Zhang Xiangyan, Li Yi, et al. 2020. Comparative analysis of mitochondrial genomes among the subfamily Sarcophaginae (Diptera: Sarcophagidae) and phylogenetic implications. International Journal of Biological Macromolecules, 161: 214–222. doi: 10.1016/j.ijbiomac.2020.06.043
    Ronquist F, Teslenko M, Van Der Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542. doi: 10.1093/sysbio/sys029
    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12): 3299–3302. doi: 10.1093/molbev/msx248
    Ruan Huiting, Li Min, Li Zhenhai, et al. 2020. Comparative analysis of complete mitochondrial genomes of three Gerres fishes (Perciformes: Gerreidae) and primary exploration of their evolution history. International Journal of Molecular Sciences, 21(5): 1874. doi: 10.3390/ijms21051874
    Sanchez G, Tomano S, Yamashiro C, et al. 2016. Population genetics of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers. Fisheries Research, 175: 1–9. doi: 10.1016/j.fishres.2015.11.005
    Sato M, Sato K. 2013. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(8): 1979–1984. doi: 10.1016/j.bbamcr.2013.03.010
    Shahdadi A, Ng P K L, Schubart C D. 2018. Morphological and phylogenetic evidence for a new species of Parasesarma De Man, 1895 (Crustacea: Decapoda: Brachyura: Sesarmidae) from the Malay Peninsula, previously referred to as Parasesarma indiarum (Tweedie, 1940). Raffles Bulletin of Zoology, 66: 739–762
    Shahdadi A, Schubart C D. 2015. Evaluating the consistency and taxonomic importance of cheliped and other morphological characters that potentially allow identification of species of the genus Perisesarma De Man, 1895 (Brachyura, Sesarmidae). Crustaceana, 88(10−11): 1079–1095. doi: 10.1163/15685403-00003473
    Shahdadi A, Schubart C D. 2018. Taxonomic review of Perisesarma (Decapoda: Brachyura: Sesarmidae) and closely related genera based on morphology and molecular phylogenetics: new classification, two new genera and the questionable phylogenetic value of the epibranchial tooth. Zoological Journal of the Linnean Society, 182(3): 517–548. doi: 10.1093/zoolinnean/zlx032
    Stothard P, Wishart D S. 2005. Circular genome visualization and exploration using CGView. Bioinformatics, 21(4): 537–539. doi: 10.1093/bioinformatics/bti054
    Sun Ziqiang, Liu Yingqi, Wilson J J, et al. 2019. Mitochondrial genome of Phalantus geniculatus (Hemiptera: Reduviidae): trnT duplication and phylogenetic implications. International Journal of Biological Macromolecules, 129: 110–115. doi: 10.1016/j.ijbiomac.2019.01.205
    Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4): 564–577. doi: 10.1080/10635150701472164
    Tan M H, Gan Hanming, Lee Y P, et al. 2018. ORDER within the chaos: insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution, 127: 320–331. doi: 10.1016/j.ympev.2018.05.015
    Thyagarajan B, Padua R A, Campbell C. 1996. Mammalian mitochondria possess homologous DNA recombination activity. Journal of Biological Chemistry, 271(44): 27536–27543. doi: 10.1074/jbc.271.44.27536
    Tsang L M, Schubart C D, Ahyong S T, et al. 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs. Molecular Biology and Evolution, 31(5): 1173–1187. doi: 10.1093/molbev/msu068
    Tsaousis A D, Martin D P, Ladoukakis E D, et al. 2005. Widespread recombination in published animal mtDNA sequences. Molecular Biology and Evolution, 22(4): 925–933. doi: 10.1093/molbev/msi084
    Tweedie M W F. 1954. Notes on grapsoid crabs from the Raffles Museum, Nos. 3, 4 and 5. Bulletin of the Raffles Museum, 25: 118–128
    Wang Yuan, Chen Jing, Jiang Liyun, et al. 2015. Hemipteran mitochondrial genomes: features, structures and implications for phylogeny. International Journal of Molecular Sciences, 16(6): 12382–12404
    Wang Ziqian, Shi Xuejia, Guo Huayun, et al. 2020a. Characterization of the complete mitochondrial genome of Uca lacteus and comparison with other Brachyuran crabs. Genomics, 112(1): 10–19. doi: 10.1016/j.ygeno.2019.06.004
    Wang Zhengfei, Shi Xuejia, Tao Yitao, et al. 2019. The complete mitochondrial genome of Parasesarma pictum (Brachyura: Grapsoidea: Sesarmidae) and comparison with other Brachyuran crabs. Genomics, 111(4): 799–807. doi: 10.1016/j.ygeno.2018.05.002
    Wang Qi, Tang Dan, Guo Huayun, et al. 2020b. Comparative mitochondrial genomic analysis of Macrophthalmus pacificus and insights into the phylogeny of the Ocypodoidea & Grapsoidea. Genomics, 112(1): 82–91. doi: 10.1016/j.ygeno.2019.12.012
    Wang Zhengfei, Wang Ziqian, Shi Xuejia, et al. 2018. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. International Journal of Biological Macromolecules, 118: 31–40. doi: 10.1016/j.ijbiomac.2018.06.056
    Wu Xiangyun, Li Xiaoling, Li Lu, et al. 2012. New features of Asian Crassostrea oyster mitochondrial genomes: a novel alloacceptor tRNA gene recruitment and two novel ORFs. Gene, 507(2): 112–118. doi: 10.1016/j.gene.2012.07.032
    Xin Zhaozhe, Liu Yu, Tang Boping, et al. 2018. A comprehensive phylogenetic analysis of Grapsoidea crabs (Decapoda: Brachyura) based on mitochondrial cytochrome oxidase subunit 1 (CO1) genes. Turkish Journal of Zoology, 42: 46–52. doi: 10.3906/zoo-1703-46
    Yang Ziheng. 2006. Computational Molecular Evolution. Oxford: Oxford University Press, 259–292
    Yang Zhihui, Yang Tingting, Liu Yu, et al. 2019. The complete mitochondrial genome of Sinna extrema (Lepidoptera: Nolidae) and its implications for the phylogenetic relationships of Noctuoidea species. International Journal of Biological Macromolecules, 137: 317–326. doi: 10.1016/j.ijbiomac.2019.06.238
    Zhang Zhiqiang. 2011. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148: 1–237. doi: 10.11646/zootaxa.3148.1.1
    Zhang Dong, Gao Fangluan, Jakovlić I, et al. 2020a. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): 348–355. doi: 10.1111/1755-0998.13096
    Zhang Bo, Wu Yingying, Wang Xin, et al. 2020b. Comparative analysis of mitochondrial genome of a deep-sea crab Chaceon granulates reveals positive selection and novel genetic features. Journal of Oceanology and Limnology, 38(2): 427–437. doi: 10.1007/s00343-019-8364-x
    Zhang Zhan, Xing Yuhui, Cheng Jiajia, et al. 2020c. Phylogenetic implications of mitogenome rearrangements in East Asian potamiscine freshwater crabs (Brachyura: Potamidae). Molecular Phylogenetics and Evolution, 143: 106669. doi: 10.1016/j.ympev.2019.106669
    Zhao Ling, Zheng Zheming, Huang Yuan, et al. 2011. Comparative analysis of the mitochondrial control region in Orthoptera. Zoological Studies, 50(3): 385–393
    Zhuang Xuan, Cheng C H C. 2010. ND6 gene “lost” and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids. Molecular Biology and Evolution, 27(6): 1391–1403. doi: 10.1093/molbev/msq026
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (99) PDF downloads(4) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint