Volume 41 Issue 5
May  2022
Turn off MathJax
Article Contents
Cong Gao, Lei Zhou. Tropical cyclone genesis over the western North Pacific simulated by Coupled Model Intercomparison Project Phase 6 models[J]. Acta Oceanologica Sinica, 2022, 41(5): 64-77. doi: 10.1007/s13131-021-1860-9
Citation: Cong Gao, Lei Zhou. Tropical cyclone genesis over the western North Pacific simulated by Coupled Model Intercomparison Project Phase 6 models[J]. Acta Oceanologica Sinica, 2022, 41(5): 64-77. doi: 10.1007/s13131-021-1860-9

Tropical cyclone genesis over the western North Pacific simulated by Coupled Model Intercomparison Project Phase 6 models

doi: 10.1007/s13131-021-1860-9
Funds:  The National Natural Science Foundation of China under contract Nos 42076001, 41690121, and 41690120; the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311020004; the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No. SL2020PT205.
More Information
  • Corresponding author: E-mail: gaocong@sjtu.edu.cn
  • Received Date: 2021-03-05
  • Accepted Date: 2021-05-08
  • Available Online: 2022-01-17
  • Publish Date: 2022-05-31
  • Threatening millions of people and causing billions of dollars in losses, tropical cyclones (TCs) are among the most severe natural hazards in the world, especially over the western North Pacific. However, the response of TCs to a warming or changing climate has been the subject of considerable research, often with conflicting results. In this study, the abilities of Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) models to simulate TC genesis are assessed through historical simulations. The results indicate that a systematic humidity bias persists in most CMIP6 models from corresponding CMIP Phase 5 models, which leads to an overestimation of climatological TC genesis. However, the annual cycle of TC genesis is well captured by CMIP6 models. The abilities of 25 models to simulate the geographical patterns of TC genesis vary significantly. In addition, seven models are identified as well simulated models, but seven models are identified as poorly simulated ones. A comparison of the environmental variables for TC genesis in the well-simulated group and the poorly simulated group identifies moisture in the mid-troposphere as a key factor in the realistic simulation of El Niño-Southern Oscillation (ENSO) impacts on TC genesis. In contrast with the observations, the poorly simulated group does not reproduce the suppressing effect of negative moisture anomalies on TC genesis in the northwestern region (20°–30°N, 120°–145°E) during El Niño years. Given the interaction between TC and ENSO, these results provide a guidance for future TC projections under climate change by CMIP6 models.
  • loading
  • [1]
    Aiyyer A, Thorncroft C. 2011. Interannual-to-multidecadal variability of vertical shear and tropical cyclone activity. Journal of Climate, 24(12): 2949–2962. doi: 10.1175/2010JCLI3698.1
    Bell R, Hodges K, Vidale P L, et al. 2014. Simulation of the global ENSO-tropical cyclone teleconnection by a high-resolution coupled general circulation model. Journal of Climate, 27(17): 6404–6422. doi: 10.1175/JCLI-D-13-00559.1
    Bellenger H, Guilyardi E, Leloup J, et al. 2014. ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dynamics, 42(7–8): 1999–2018. doi: 10.1007/s00382-013-1783-z
    Bister M, Emanuel K A. 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 65(3–4): 233–240. doi: 10.1007/BF01030791
    Bruyère C L, Holland G J, Towler E. 2012. Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic Basin. Journal of Climate, 25(24): 8611–8626. doi: 10.1175/JCLI-D-11-00619.1
    Camargo S J. 2013. Global and regional aspects of tropical cyclone activity in the CMIP5 models. Journal of Climate, 26(24): 9880–9902. doi: 10.1175/JCLI-D-12-00549.1
    Camargo S J, Barnston A G, Zebiak S E. 2005. A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus A: Dynamic Meteorology and Oceanography, 57(4): 589–604. doi: 10.3402/tellusa.v57i4.14705
    Camargo S J, Emanuel K A, Sobel A H. 2007a. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20(19): 4819–4834. doi: 10.1175/JCLI4282.1
    Camargo S J, Tippett M K, Sobel A H, et al. 2014. Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. Journal of Climate, 27(24): 9171–9196. doi: 10.1175/JCLI-D-13-00505.1
    Camargo S J, Sobel A H. 2005. Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18(15): 2996–3006. doi: 10.1175/JCLI3457.1
    Camargo S, Sobel A H, Barnston A G, et al. 2007b. Tropical cyclone genesis potential index in climate models. Tellus A: Dynamic Meteorology and Oceanography, 59(4): 428–443. doi: 10.1111/j.1600-0870.2007.00238.x
    Camargo S J, Wheeler M C, Sobel A H. 2009. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. Journal of the Atmospheric Sciences, 66(10): 3061–3074. doi: 10.1175/2009JAS3101.1
    Chan J C L. 1985. Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Monthly Weather Review, 113(4): 599–606. doi: 10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2
    Chan J C L, Liu K S. 2004. Global warming and western North Pacific typhoon activity from an observational perspective. Journal of Climate, 17(23): 4590–4602. doi: 10.1175/3240.1
    Chen T C, Weng S P, Yamazaki N, et al. 1998. Interannual variation in the tropical cyclone formation over the western North Pacific. Monthly Weather Review, 126(4): 1080–1090. doi: 10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2
    Chia H H, Ropelewski C F. 2002. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. Journal of Climate, 15(20): 2934–2944. doi: 10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2
    Du Yan, Yang Lei, Xie Shangping. 2011. Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. Journal of Climate, 24(1): 315–322. doi: 10.1175/2010JCLI3890.1
    Emanuel K A. 1986. An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. Journal of the Atmospheric Sciences, 43(6): 585–605. doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
    Emanuel K A. 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 110(30): 12219–12224. doi: 10.1073/pnas.1301293110
    Emanuel K, Nolan D S. 2004. Tropical cyclone activity and the global climate system. In: Proceedings of the 26th Conference on Hurricanes and Tropical Meteorolgy. Miami, FL: 240–241
    Emanuel K, Sundararajan R, Williams J. 2008. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological Society, 89(3): 347–368. doi: 10.1175/BAMS-89-3-347
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
    Frank W M, Ritchie E A. 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review, 129(9): 2249–2269. doi: 10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
    Fu Dan, Chang Ping, Patricola C M. 2017. Intrabasin variability of East Pacific tropical cyclones during ENSO regulated by central American gap winds. Scientific Reports, 7: 1658. doi: 10.1038/s41598-017-01962-3
    Gao Si, Zhu Langfeng, Zhang Wei, et al. 2020. Western North Pacific tropical cyclone activity in 2018: a season of extremes. Scientific Reports, 10(1): 5610. doi: 10.1038/s41598-020-62632-5
    Gilford D M, Solomon S, Emanuel K A. 2017. On the seasonal cycles of tropical cyclone potential intensity. Journal of Climate, 30(16): 6085–6096. doi: 10.1175/JCL-D-16-0827.1
    Gray W M. 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. In: Shaw D B, ed. Supplement to Meteorology over the Tropical Oceans. Bracknell: James Glaisher House, 155–218
    Hagedorn R, Doblas-Reyes F J, Palmer T N. 2005. The rationale behind the success of multi-model ensembles in seasonal forecasting: I. basic concept. Tellus A: Dynamic Meteorology and Oceanography, 57(3): 219–233. doi: 10.3402/tellusa.v57i3.14657
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
    Hoesly R M, Smith S J, Feng Leyang, et al. 2018. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11(1): 369–408. doi: 10.5194/gmd-11-369-2018
    Hotelling H. 1940. The selection of variates for use in prediction with some comments on the general problem of nuisance parameters. Annals of Mathematical Statistics, 11(3): 271–283. doi: 10.1214/aoms/1177731867
    Huang Ping, Chou C, Huang Ronghui. 2011. Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. Journal of Climate, 24(24): 6339–6352. doi: 10.1175/2011JCLI4200.1
    Huang Boyin, Thorne P W, Banzon V F, et al. 2017. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. Journal of Climate, 30(20): 8179–8205. doi: 10.1175/JCLI-D-16-0836.1
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Kim H M, Webster P J, Curry J A. 2011. Modulation of North Pacific tropical cyclone activity by three phases of ENSO. Journal of Climate, 24(6): 1839–1849. doi: 10.1175/2010JCLI3939.1
    Klotzbach P J. 2014. The Madden-Julian Oscillation's impacts on worldwide tropical cyclone activity. Journal of Climate, 27(6): 2317–2330. doi: 10.1175/JCLI-D-13-00483.1
    Klotzbach P J, Landsea C W. 2015. Extremely intense hurricanes: revisiting Webster et al. (2005) after 10 Years. Journal of Climate, 28(19): 7621–7629. doi: 10.1175/JCLI-D-15-0188.1
    Knapp K R, Kruk M C, Levinson D H, et al. 2010. The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. Bulletin of the American Meteorological Society, 91(3): 363–376. doi: 10.1175/2009bams2755.1
    Knutson T R, McBride J L, Chan J, et al. 2010. Tropical cyclones and climate change. Nature Geoscience, 3(3): 157–163. doi: 10.1038/ngeo779
    Knutson T R, Sirutis J J, Garner S T, et al. 2008. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geoscience, 1(6): 359–364. doi: 10.1038/ngeo202
    Knutson T R, Sirutis J J, Vecchi G A, et al. 2013. Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. Journal of Climate, 26(17): 6591–6617. doi: 10.1175/JCLI-D-12-00539.1
    Kowaleski A M, Evans J L. 2015. Thermodynamic observations and flux calculations of the tropical cyclone surface layer within the context of potential intensity. Weather and Forecasting, 30(5): 1303–1320. doi: 10.1175/WAF-D-14-00162.1
    Landsea, C W. 2000. El Niño-Southern Oscillation and the seasonal predictability of tropical cyclones. In: El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, 149: 181
    Li Chunxiang, Wang Chunzai. 2014. Simulated impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific: large-scale atmospheric response. Climate Dynamics, 42(9-10): 2727–2743. doi: 10.1007/s00382-013-1999-y
    Li R C Y, Zhou Wen. 2013. Modulation of western North Pacific tropical cyclone activity by the ISO: Part I. genesis and intensity. Journal of Climate, 26(9): 2904–2918. doi: 10.1175/JCLI-D-12-00210.1
    Lin Jialin. 2007. The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. Journal of Climate, 20(18): 4497–4525. doi: 10.1175/JCLI4272.1
    Lin I I, Chan J C L. 2015. Recent decrease in typhoon destructive potential and global warming implications. Nature Communications, 6: 7182. doi: 10.1038/ncomms8182
    Liu K S, Chan J C L. 2008. Interdecadal variability of western North Pacific tropical cyclone tracks. Journal of Climate, 21(17): 4464–4476. doi: 10.1175/2008JCLI2207.1
    Makarieva A M, Gorshkov V G, Nefiodov A V, et al. 2017. Fuel for cyclones: the water vapor budget of a hurricane as dependent on its movement. Atmospheric Research, 193: 216–230. doi: 10.1016/j.atmosres.2017.04.006
    Maloney E D, Hartmann D L. 2001. The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation: Part I. observations. Journal of the Atmospheric Sciences, 58(17): 2545–2558. doi: 10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2
    McPhaden M J, Zebiak S E, Glantz M H. 2006. ENSO as an integrating concept in earth science. Science, 314(5806): 1740–1745. doi: 10.1126/science.1132588
    Meinshausen M, Vogel E, Nauels A, et al. 2017. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10(5): 2057–2116. doi: 10.5194/gmd-10-2057-2017
    Menkes C E, Lengaigne M, Marchesiello P, et al. 2012. Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dynamics, 38(1–2): 301–321. doi: 10.1007/s00382-011-1126-x
    Merlis T M, Zhao Ming, Held I M. 2013. The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophysical Research Letters, 40(15): 4109–4114. doi: 10.1002/grl.50680
    Mori M, Kimoto M, Ishii M, et al. 2013. Hindcast prediction and near-future projection of tropical cyclone activity over the western North Pacific using CMIP5 near-term experiments with MIROC. Journal of the Meteorological Society of Japan, 91(4): 431–452. doi: 10.2151/jmsj.2013-402
    Murphy A H. 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116(12): 2417–2424. doi: 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
    Ooyama K V. 1982. Conceptual evolution of the theory and modeling of the tropical cyclone. Journal of the Meteorological Society of Japan, 60(1): 369–380. doi: 10.2151/jmsj1965.60.1_369
    Shen Yixuan, Sun Yuan, Zhong Zhong, et al. 2020. A possible cause of tropical cyclone eastward genesis location bias study using CAM5 model in western North Pacific. Earth and Space Science, 7(1): e2019EA000955. doi: 10.1029/2019EA000955
    Shultz J M, Russell J, Espinel Z. 2005. Epidemiology of tropical cyclones: the dynamics of disaster, disease, and development. Epidemiologic Reviews, 27(1): 21–35. doi: 10.1093/epirev/mxi011
    Song Yajuan, Wang Lei, Lei Xiaoyan, et al. 2015. Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models. Advances in Atmospheric Sciences, 32(11): 1539–1550. doi: 10.1007/s00376-015-4162-3
    Steiger J H. 1980. Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2): 245–251. doi: 10.1037/0033-2909.87.2.245
    Tan Kexin, Huang Ping, Liu Fei, et al. 2019. Simulated ENSO's impact on tropical cyclone genesis over the western North Pacific in CMIP5 models and its changes under global warming. International Journal of Climatology, 39(8): 3668–3678. doi: 10.1002/joc.6031
    Tian Baijun, Dong Xinyu. 2020. The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophysical Research Letters, 47(8): e2020GL087232. doi: 10.1029/2020GL087232
    Tian Fangxing, Zhou Tianjun, Zhang Lixia. 2013. Tropical cyclone genesis potential index over the western North Pacific simulated by LASG/IAP AGCM. Acta Meteorologica Sinica, 27(1): 50–62. doi: 10.1007/s13351-013-0106-y
    Tippett M K, Camargo S J, Sobel A H. 2011. A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. Journal of Climate, 24(9): 2335–2357. doi: 10.1175/2010JCLI3811.1
    Walsh K, Lavender S, Scoccimarro E, et al. 2013. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 40(3–4): 585–599. doi: 10.1007/s00382-012-1298-z
    Wang Shuguang, Camargo S J, Sobel A H, et al. 2014. Impact of the tropopause temperature on the intensity of tropical cyclones: an idealized study using a mesoscale model. Journal of the Atmospheric Sciences, 71(11): 4333–4348. doi: 10.1175/JAS-D-14-0029.1
    Wang Bin, Chan J C L. 2002. How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15(13): 1643–1658. doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
    Wang Chunzai, Li Chunxiang, Mu Mu, et al. 2013. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Climate Dynamics, 40(11–12): 2887–2902. doi: 10.1007/s00382-012-1434-9
    Wang Xidong, Liu Hailong. 2016. PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Climate Dynamics, 46(1–2): 15–28. doi: 10.1007/s00382-015-2563-8
    Wang Chunzai, Wang Xin. 2013. Classifying El Niño Modoki I and II by different impacts on rainfall in southern china and typhoon tracks. Journal of Climate, 26(4): 1322–1338. doi: 10.1175/JCLI-D-12-00107.1
    Wang Chao, Wang Bin. 2019. Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects. Climate Dynamics, 53(5–6): 2697–2714. doi: 10.1007/s00382-019-04651-1
    Wang Chunzai, Weisberg R H, Virmani J I. 1999. Western Pacific interannual variability associated with the El Niño-Southern Oscillation. Journal of Geophysical Research: Oceans, 104(C3): 5131–5149. doi: 10.1029/1998JC900090
    Wang Bin, Yang Yuxing, Ding Qinghua, et al. 2010. Climate control of the global tropical storm days (1965–2008). Geophysical Research Letters, 37(7): L07704. doi: 10.1029/2010GL042487
    Watterson I G, Evans J L, Ryan B F. 1995. Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. Journal of Climate, 8(12): 3052–3066. doi: 10.1175/1520-0442(1995)008<3052:SAIVOT>2.0.CO;2
    Wengel C, Dommenget D, Latif M, et al. 2018. What controls ENSO-amplitude diversity in climate models?. Geophysical Research Letters, 45(4): 1989–1996. doi: 10.1002/2017GL076849
    Wing A A, Emanuel K, Solomon S. 2015. On the factors affecting trends and variability in tropical cyclone potential intensity. Geophysical Research Letters, 42(20): 8669–8677. doi: 10.1002/2015GL066145
    Wu Qiong, Zhao Jiuwei, Zhan Ruifen, et al. 2021. Revisiting the interannual impact of the Pacific Meridional Mode on tropical cyclone genesis frequency in the western North Pacific. Climate Dynamics, 56(3–4): 1003–1015. doi: 10.1007/s00382-020-05515-9
    Yamasaki M. 2007. A view on tropical cyclones as CISK. Journal of the Meteorological Society of Japan, 85B: 145–164. doi: 10.2151/jmsj.85B.145
    Yan Qing, Korty R, Zhang Zhongshi, et al. 2019. Evolution of tropical cyclone genesis regions during the Cenozoic era. Nature Communications, 10(1): 3076. doi: 10.1038/s41467-019-11110-2
    Yang Lei, Chen Sheng, Wang Chunzai, et al. 2018a. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast. Climate Dynamics, 51(7–8): 2695–2705. doi: 10.1007/s00382-017-4037-7
    Yang Mengmiao, Zhang G J, Sun Dezheng. 2018b. Precipitation and moisture in four leading CMIP5 models: biases across large-scale circulation regimes and their attribution to dynamic and thermodynamic factors. Journal of Climate, 31(13): 5089–5106. doi: 10.1175/JCLI-D-17-0718.1
    Yokoi S, Takayabu Y N, Chan J C L. 2009. Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dynamics, 33(5): 665–683. doi: 10.1007/s00382-009-0593-9
    Yonekura E, Hall T M. 2011. A statistical model of tropical cyclone tracks in the western North Pacific with ENSO-dependent cyclogenesis. Journal of Applied Meteorology and Climatology, 50(8): 1725–1739. doi: 10.1175/2011JAMC2617.1
    Yonekura E, Hall T M. 2014. ENSO effect on East Asian tropical cyclone landfall via changes in tracks and genesis in a statistical model. Journal of Applied Meteorology and Climatology, 53(2): 406–420. doi: 10.1175/JAMC-D-12-0240.1
    Zhang G J, Song Xiaoliang, Wang Yong. 2019. The double ITCZ syndrome in GCMs: a coupled feedback problem among convection, clouds, atmospheric and ocean circulations. Atmospheric Research, 229: 255–268. doi: 10.1016/j.atmosres.2019.06.023
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (361) PDF downloads(36) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint