Volume 41 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Ruixin Huang, Bo Qiu, Zhiyou Jing. Surface available gravitational potential energy in the world oceans[J]. Acta Oceanologica Sinica, 2022, 41(4): 40-56. doi: 10.1007/s13131-021-1852-9
Citation: Ruixin Huang, Bo Qiu, Zhiyou Jing. Surface available gravitational potential energy in the world oceans[J]. Acta Oceanologica Sinica, 2022, 41(4): 40-56. doi: 10.1007/s13131-021-1852-9

Surface available gravitational potential energy in the world oceans

doi: 10.1007/s13131-021-1852-9
Funds:  The National Natural Science Foundation of China under contract Nos 92058201 and 41776040; the Chinese Academy of Sciences under contract Nos ZDBS-LY-DQC011, XDA15020901 and ISEE2018PY05.
More Information
  • Corresponding author: E-mail: jingzhiyou@scsio.ac.cn
  • Received Date: 2020-12-17
  • Accepted Date: 2021-05-01
  • Available Online: 2022-02-12
  • Publish Date: 2022-04-01
  • Satellite altimetry observations, including the upcoming Surface Water and Ocean Topography mission, provide snapshots of the global sea surface high anomaly field. The common practice in analyzing these surface elevation data is to convert them into surface velocity based on the geostrophic approximation. With increasing horizontal resolution in satellite observations, sea surface elevation data will contain many dynamical signals other than the geostrophic velocity. A new physical quantity, the available surface potential energy, is conceptually introduced in this study defined as the density multiplied by half of the squared deviation from the local mean reference surface elevation. This gravitational potential energy is an intrinsic property of the sea surface height field and it is an important component of ocean circulation energetics, especially near the sea surface. In connection with other energetic terms, this new variable may help us better understand the dynamics of oceanic circulation, in particular the processes in connection with the free surface data collected through satellite altimetry. The preliminary application of this concept to the numerically generated monthly mean Global Ocean Data Assimilation System data and Archiving, Validation, and Interpretation of Satellite Oceanographic altimeter data shows that the available surface potential energy is potentially linked to other dynamic variables, such as the total kinetic energy, eddy kinetic energy and available potential energy.
  • loading
  • [1]
    Apel J R. 1980. Satellite sensing of ocean surface dynamics. Annual Review of Earth and Planetary Sciences, 8: 303–342. doi: 10.1146/annurev.ea.08.050180.001511
    [2]
    Apel J R, Byrne H M, Proni J R, et al. 1975. Observations of oceanic internal and surface waves from the earth resources technology satellite. Journal of Geophysical Research, 80(6): 865–881. doi: 10.1029/JC080i006p00865
    [3]
    Apel J R, Byrne H M, Proni J R, et al. 1976. A study of oceanic internal waves using satellite imagery and ship data. Remote Sensing of Environment, 5: 125–135. doi: 10.1016/0034-4257(76)90043-2
    [4]
    Behringer D, Xue Yan. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting. Washington: Washington State Convention and Trade Center, 11–15
    [5]
    Blumen W. 1972. Geostrophic adjustment. Reviews of Geophysics, 10(2): 485–528. doi: 10.1029/RG010i002p00485
    [6]
    Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. 2019. Scale transition from geostrophic motions to internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(12): 9364–9383. doi: 10.1029/2019jc015575
    [7]
    Chavanne C P, Klein P. 2010. Can oceanic submesoscale processes be observed with satellite altimetry?. Geophysical Research Letters, 37(22): L22602,
    [8]
    Chelton D B, Schlax M G, Samelson R M, et al. 2019. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity. Progress in Oceanography, 173: 256–350. doi: 10.1016/j.pocean.2018.10.012
    [9]
    Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41(1): 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
    [10]
    Frederikse T, Landerer F, Caron L, et al. 2020. The causes of sea-level rise since 1900. Nature, 584(7821): 393–397. doi: 10.1038/s41586-020-2591-3
    [11]
    Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press, 30
    [12]
    Gula J, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the gulf stream. Journal of Physical Oceanography, 44(10): 2617–2643. doi: 10.1175/jpo-d-14-0029.1
    [13]
    Huang Ruixin. 2005. Available potential energy in the world’s oceans. Journal of Marine Research, 63(1): 141–158. doi: 10.1357/0022240053693770
    [14]
    Huang Ruixin. 2010. Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge: Cambridge University Press, 791
    [15]
    Huang Ruixin, Jin Xiangze. 2002. Sea surface elevation and bottom pressure anomalies due to thermohaline forcing. Part I: isolated perturbations. Journal of Physical Oceanography, 32(7): 2131–2150. doi: 10.1175/1520-0485(2002)032<2131:sseabp>2.0.co;2
    [16]
    Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. 2021. Submesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific Subtropical Ocean. Journal of Physical Oceanography, 51(1): 83–100. doi: 10.1175/JPO-D-20-0076.1
    [17]
    Klymak J M, Shearman R K, Gula J, et al. 2016. Submesoscale streamers exchange water on the north wall of the Gulf Stream. Geophysical Research Letters, 43(3): 1226–1233. doi: 10.1002/2015gl067152
    [18]
    Lorenz E N. 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7(2): 157–167. doi: 10.3402/tellusa.v7i2.8796
    [19]
    Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annual Review of Marine Science, 8(1): 161–184. doi: 10.1146/annurev-marine-010814-015912
    [20]
    Margules M. 1905. Uber die energie der sturme. Wein K K. Hof-und. Stattsdruckerei: 26
    [21]
    Mei C C. 1983. The Applied Dynamics of Ocean Surface Waves. New York: Wiley, 740
    [22]
    Oort A H, Anderson L A, Peixoto J P. 1994. Estimates of the energy cycle of the oceans. Journal of Geophysical Research: Oceans, 99(C4): 7665–7688. doi: 10.1029/93jc03556
    [23]
    Oort A H, Ascher S C, Levitus S, et al. 1989. New estimates of the available potential energy in the world ocean. Journal of Geophysical Research: Oceans, 94(C3): 3187–3200. doi: 10.1029/JC094iC03p03187
    [24]
    Pedlosky J. 1987. Geophysical Fluid Dynamics. New York: Springer-Verlag, 710
    [25]
    Qiu Bo, Chen Shuiming, Klein P, et al. 2018. Seasonality in transition scale from balanced to unbalanced motions in the world ocean. Journal of Physical Oceanography, 48(3): 591–605. doi: 10.1175/jpo-d-17-0169.1
    [26]
    Qiu Bo, Nakano T, Chen Shuiming, et al. 2017. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nature Communications, 8(1): 14055. doi: 10.1038/ncomms14055
    [27]
    Ray R D, Zaron E D. 2011. Non-stationary internal tides observed with satellite altimetry. Geophysical Research Letters, 38(17): L17609. doi: 10.1029/2011gl048617
    [28]
    Reid R O, Elliott B A, Olson D B. 1981. Available potential energy: a clarification. Journal of Physical Oceanography, 11(1): 15–29. doi: 10.1175/1520-0485(1981)011<0015:apeac>2.0.co;2
    [29]
    Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
    [30]
    Sullivan P P, McWilliams J C. 2018. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. Journal of Fluid Mechanics, 837: 341–380. doi: 10.1017/jfm.2017.833
    [31]
    Taylor J R, Ferrari R. 2011. Ocean fronts trigger high latitude phytoplankton blooms. Geophysical Research Letters, 38(23): L23601. doi: 10.1029/2011gl049312
    [32]
    Thomas L N, Taylor J R, D’Asaro E A, et al. 2016. Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. Journal of Physical Oceanography, 46(1): 197–217. doi: 10.1175/jpo-d-15-0008.1
    [33]
    Wang Wei, Huang Ruixin. 2004. Wind energy input to the surface waves. Journal of Physical Oceanography, 34(5): 1276–1280. doi: 10.1175/1520-0485(2004)034<1276:weitts>2.0.co;2
    [34]
    Wunsch C. 1998. The work done by the wind on the oceanic general circulation. Journal of Physical Oceanography, 28(11): 2332–2340. doi: 10.1175/1520-0485(1998)028<2332:twdbtw>2.0.co;2
    [35]
    Zhao Zhongxiang. 2017. The global mode-1 S2 internal tide. Journal of Geophysical Research: Oceans, 122(11): 8794–8812. doi: 10.1002/2017jc013112
  • supplement-huangruixin.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (724) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return