Volume 41 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Yu Bai, Liang Zhao, Jingen Xiao, Shiying Lin. Contraction and warming of Antarctic Bottom Water in the Amundsen Sea[J]. Acta Oceanologica Sinica, 2022, 41(4): 68-79. doi: 10.1007/s13131-021-1829-8
Citation: Yu Bai, Liang Zhao, Jingen Xiao, Shiying Lin. Contraction and warming of Antarctic Bottom Water in the Amundsen Sea[J]. Acta Oceanologica Sinica, 2022, 41(4): 68-79. doi: 10.1007/s13131-021-1829-8

Contraction and warming of Antarctic Bottom Water in the Amundsen Sea

doi: 10.1007/s13131-021-1829-8
Funds:  The Impact and Response of Antarctic Seas to Climate Change Program under contract No. RFSOCC2020-2022-No. 18; the National Key Research and Development Program of China under contract No. 2016YFA0601301.
More Information
  • Corresponding author: E-mail: zhaoliang@tust.edu.cn
  • Received Date: 2020-12-05
  • Accepted Date: 2021-02-22
  • Available Online: 2022-02-19
  • Publish Date: 2022-04-01
  • Antarctic Bottom Water (AABW) plays an important role in the meridional overturning circulation and contributes significantly to global heat transport and sea level rise (SLR). Based on the Global Ocean (1/12)° Physical Reanalysis (GLORYS12V1) products and conductivity-temperature-depth instrument data from the World Ocean Circulation Experiment hydrographic program, we analyzed the trends in the thickness, volume, temperature, salinity, and neutral density of the AABW in the Amundsen Sea from 1993 to 2017. Over the past 25 years, the volume has decreased by 3.45×1012 m3/a, thinning at a rate of 5 m/a. In the vertical direction, the contraction of the AABW is compensated by the volume expansion of the Circumpolar Deep Water. As the volume of AABW decreases, the temperature of the AABW increases by about 0.002°C/a. This warming is equivalent to a heat flux of 0.27 W/m2. A local SLR is produced due to thermal expansion of 0.35 mm/a. During the study period, the neutral density decreased by 0.000 3 kg/(m3∙a) due to warming. In the horizontal direction, the volume of AABW flowing from the Ross Sea into the Amundsen Sea gradually decreases and the temperature of the AABW increases continuously. The horizontal transport loss of the AABW volume is 4.07×1014 m3 and the horizontal heat transport results in a 0.03°C increase in the temperature of the AABW.
  • loading
  • [1]
    Azaneu M, Kerr R, Mata M M, et al. 2013. Trends in the deep Southern Ocean (1958–2010): Implications for Antarctic Bottom Water properties and volume export. Journal of Geophysical Research: Oceans, 118(9): 4213–4227. doi: 10.1002/jgrc.20303
    [2]
    Carter L, McCave I N, Williams M J M. 2008. Circulation and water masses of the Southern Ocean: a review. Developments in Earth and Environmental Sciences, 8: 85–114. doi: 10.1016/S1571-9197(08)00004-9
    [3]
    Foster T D, Carmack E C. 1976. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep Sea Research and Oceanographic Abstracts, 23(4): 301–317. doi: 10.1016/0011-7471(76)90872-X
    [4]
    Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408(6811): 453–457. doi: 10.1038/35044048
    [5]
    Jackson L C, Dubois C, Forget G, et al. 2019. The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses. Journal of Geophysical Research: Oceans, 124(12): 9141–9170. doi: 10.1029/2019JC015210
    [6]
    Jacobs S S. 2004. Bottom water production and its links with the thermohaline circulation. Antarctic Science, 16(4): 427–437. doi: 10.1017/S095410200400224X
    [7]
    Jacobs S S, Fairbanks R G, Horibe Y. 1985. Origin and evolution of water masses near the Antarctic continental margin: Evidence from H218O/H216O ratios in seawater. In: Jacobs S S, ed. Oceanology of the Antarctic Continental Shelf. Washington, DC: American Geophysical Union, 59–85,
    [8]
    Jacobs S S, Giulivi C F. 2010. Large multidecadal salinity trends near the Pacific–Antarctic continental margin. Journal of Climate, 23(17): 4508–4524. doi: 10.1175/2010JCLI3284.1
    [9]
    Jacobs S S, Giulivi C F, Mele P A. 2002. Freshening of the Ross Sea during the late 20th century. Science, 297(5580): 386–389. doi: 10.1126/science.1069574
    [10]
    Johnson G C. 2008. Quantifying Antarctic bottom water and North Atlantic deep water volumes. Journal of Geophysical Research: Oceans, 113(C5): C05027. doi: 10.1029/2007JC004477
    [11]
    Johnson G C, Doney S C. 2006. Recent western South Atlantic bottom water warming. Geophysical Research Letters, 33(14): L14614. doi: 10.1029/2006GL026769
    [12]
    Johnson G C, McTaggart K E, Wanninkhof R. 2014. Antarctic Bottom Water temperature changes in the western South Atlantic from 1989 to 2014. Journal of Geophysical Research: Oceans, 119(12): 8567–8577. doi: 10.1002/2014JC010367
    [13]
    Johnson G C, Purkey S G, Bullister J L. 2008a. Warming and freshening in the abyssal southeastern Indian Ocean. Journal of Climate, 21(20): 5351–5363. doi: 10.1175/2008JCLI2384.1
    [14]
    Johnson G C, Purkey S G, Toole J M. 2008b. Reduced Antarctic meridional overturning circulation reaches the North Atlantic Ocean. Geophysical Research Letters, 35(22): L22601. doi: 10.1029/2008GL035619
    [15]
    Kawano T, Fukasawa M, Kouketsu S, et al. 2006. Bottom water warming along the pathway of lower circumpolar deep water in the Pacific Ocean. Geophysical Research Letters, 33(23): L23613. doi: 10.1029/2006GL027933
    [16]
    Koshlyakov M N, Tarakanov R Y. 2003. Antarctic bottom water in the Pacific sector of the Southern Ocean. Oceanology, 43(1): 1–15
    [17]
    Lumpkin R, Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography, 37(10): 2550–2562. doi: 10.1175/JPO3130.1
    [18]
    Mantyla A W, Reid J L. 1983. Abyssal characteristics of the World Ocean waters. Deep-Sea Research Part A. Oceanographic Research Papers, 30(8): 805–833. doi: 10.1016/0198-0149(83)90002-X
    [19]
    Masuda S, Awaji T, Sugiura N, et al. 2010. Simulated rapid warming of abyssal North Pacific waters. Science, 329(5989): 319–322. doi: 10.1126/science.1188703
    [20]
    Meredith M P. 2013. Oceanography: replenishing the abyss. Nature Geoscience, 6(3): 166–167. doi: 10.1038/ngeo1743
    [21]
    Meredith M P, Ducklow H W, Schofield O, et al. 2016. The interdisciplinary marine system of the Amundsen Sea, Southern Ocean: recent advances and the need for sustained observations. Deep-Sea Research Part II: Topical Studies in Oceanography, 123: 1–6. doi: 10.1016/j.dsr2.2015.12.002
    [22]
    Meredith M P, Gordon A L, Garabato A C N, et al. 2011. Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre. Geophysical Research Letters, 38(3): L03603. doi: 10.1029/2010GL046265
    [23]
    Nardelli B B. 2020. A multi-year time series of observation-based 3D horizontal and vertical quasi-geostrophic global ocean currents. Earth System Science Data, 12(3): 1711–1723. doi: 10.5194/essd-12-1711-2020
    [24]
    Ohshima K I, Fukamachi Y, Williams G D, et al. 2013. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience, 6(3): 235–240. doi: 10.1038/ngeo1738
    [25]
    Orsi A H, Johnson G C, Bullister J L. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, 43(1): 55–109. doi: 10.1016/S0079-6611(99)00004-X
    [26]
    Orsi A H, Smethie Jr W M, Bullister J L. 2002. On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. Journal of Geophysical Research: Oceans, 107(C8): 3122. doi: 10.1029/2001JC000976
    [27]
    Orsi A H, Wiederwohl C L. 2009. A recount of Ross Sea waters. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(13−14): 778–795. doi: 10.1016/j.dsr2.2008.10.033
    [28]
    Ozaki H, Obata H, Naganobu M, et al. 2009. Long-term bottom water warming in the north Ross Sea. Journal of Oceanography, 65(2): 235–244. doi: 10.1007/s10872-009-0022-z
    [29]
    Patara L, Böning C W. 2014. Abyssal ocean warming around Antarctica strengthens the Atlantic overturning circulation. Geophysical Research Letters, 41(11): 3972–3978. doi: 10.1002/2014GL059923
    [30]
    Purkey S G, Johnson G C. 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. Journal of Climate, 23(23): 6336–6351. doi: 10.1175/2010JCLI3682.1
    [31]
    Purkey S G, Johnson G C. 2012. Global contraction of Antarctic bottom water between the 1980s and 2000s. Journal of Climate, 25(17): 5830–5844. doi: 10.1175/JCLI-D-11-00612.1
    [32]
    Purkey S G, Johnson G C, Talley L D, et al. 2019. Unabated bottom water warming and freshening in the South Pacific Ocean. Journal of Geophysical Research: Oceans, 124(3): 1778–1794. doi: 10.1029/2018JC014775
    [33]
    Purkey S G, Smethie Jr W M, Gebbie G, et al. 2018. A synoptic view of the ventilation and circulation of Antarctic Bottom Water from chlorofluorocarbons and natural tracers. Annual Review of Marine Science, 10(1): 503–527. doi: 10.1146/annurev-marine-121916-063414
    [34]
    Reid J L. 1997. On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Progress in Oceanography, 39(4): 263–352. doi: 10.1016/S0079-6611(97)00012-8
    [35]
    Rintoul S R. 2018. The global influence of localized dynamics in the Southern Ocean. Nature, 558(7709): 209–218. doi: 10.1038/s41586-018-0182-3
    [36]
    Schmittner A, Chiang J C H, Hemming S R. 2007. Introduction: the ocean's meridional overturning circulation. In: Schmittner A, Chiang J C H, Hemming S R, eds. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning. Washington, DC: American Geophysical Union, 1–4,
    [37]
    Shimada K, Aoki S, Ohshima K I, et al. 2012. Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin. Ocean Science, 8(4): 419–432. doi: 10.5194/os-8-419-2012
    [38]
    Uenzelmann-Neben G, Gohl K. 2012. Amundsen Sea sediment drifts: archives of modifications in oceanographic and climatic conditions. Marine Geology, 299–302: 51–62,
    [39]
    van Wijk E M, Rintoul S R. 2014. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophysical Research Letters, 41(5): 1657–1664. doi: 10.1002/2013GL058921
    [40]
    Whitworth III T, Orsi A H, Kim S J, et al. 1985. Water masses and mixing near the Antarctic Slope Front. In: Jacobs S S, Weiss R F, eds. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin. Washington, DC: American Geophysical Union, 1–27. doi: 10.1029/AR075p0001
    [41]
    Zanowski H, Hallberg R, Sarmiento J L. 2015. Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2G coupled climate model. Journal of Physical Oceanography, 45(11): 2755–2772. doi: 10.1175/JPO-D-15-0109.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (171) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return