Volume 41 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Shuang Liang, Jiangyuan Zeng, Zhen Li, Dejing Qiao. Spatio-temporal analysis of the melt onset dates over Arctic sea ice from 1979 to 2017[J]. Acta Oceanologica Sinica, 2022, 41(4): 146-156. doi: 10.1007/s13131-021-1827-x
Citation: Shuang Liang, Jiangyuan Zeng, Zhen Li, Dejing Qiao. Spatio-temporal analysis of the melt onset dates over Arctic sea ice from 1979 to 2017[J]. Acta Oceanologica Sinica, 2022, 41(4): 146-156. doi: 10.1007/s13131-021-1827-x

Spatio-temporal analysis of the melt onset dates over Arctic sea ice from 1979 to 2017

doi: 10.1007/s13131-021-1827-x
Funds:  The National Key Research and Development Program of China under contract No. 2018YFA0605403; the National Natural Science Foundation of China under contract No. 42071084; Jiangyuan Zeng was supported by the Youth Innovation Promotion Association CAS under contract No. 2018082.
More Information
  • Corresponding author: E-mail: zengjy@radi.ac.cn
  • Received Date: 2020-11-10
  • Accepted Date: 2021-02-08
  • Available Online: 2022-02-11
  • Publish Date: 2022-04-01
  • The melt onset dates (MOD) over Arctic sea ice plays an important role in the seasonal cycle of sea ice surface properties, which impacts Arctic surface solar radiation absorbed by the ice-ocean system. Monitoring interannual variations in MOD is valuable for understanding climate change. In this study, we investigated the spatio-temporal variability of MOD over Arctic sea ice and 14 Arctic sub-regions in the period of 1979 to 2017 from passive microwave satellite data. A set of mathematical and statistical methods, including the Sen’s slope and Mann-Kendall mutation tests, were used to comprehensively assess the variation trend and abrupt points of MOD during the past 39 years for different Arctic sub-regions. Additionally, the correlation between Arctic Oscillation (AO) and MOD was analyzed. The results indicate that: (1) all Arctic sub-regions show a trend toward earlier MOD except the Bering Sea and St. Lawrence Gulf. The East Siberian Sea exhibits a significantly earlier trend, with the highest rate of −9.45 d/decade; (2) the temporal variability and statistical significance of MOD trend exhibit large interannual differences with different time windows for most regions in the Arctic; (3) during the past 39 years, the MOD changed abruptly in different years for different sub-regions; (4) the seasonal AO has more influence on MOD than monthly AO. The findings in this study can improve our knowledge of MOD changes and are beneficial for further Arctic climate change study.
  • loading
  • [1]
    Aagaard K, Carmack E C. 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 94(C10): 14485–14498. doi: 10.1029/JC094iC10p14485
    [2]
    Abdalati W, Steffen K, Otto C, et al. 1995. Comparison of brightness temperatures from SSMI instruments on the DMSP F8 and FII satellites for Antarctica and the Greenland ice sheet. International Journal of Remote Sensing, 16(7): 1223–1229. doi: 10.1080/01431169508954473
    [3]
    Anderson M R. 1987. The onset of spring melt in first-year ice regions of the Arctic as determined from scanning multichannel microwave radiometer data for 1979 and 1980. Journal of Geophysical Research: Oceans, 92(C12): 13153–13163. doi: 10.1029/JC092iC12p13153
    [4]
    Anderson M, Bliss A C, Drobot S. 2019. Snow melt onset over Arctic sea ice from SMMR and SSM/I-SSMIS brightness temperatures, Version 4. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center
    [5]
    Anderson M R, Drobot S D. 2001. Spatial and temporal variability in snowmelt onset over Arctic sea ice. Annals of Glaciology, 33: 74–78. doi: 10.3189/172756401781818284
    [6]
    Ballinger T J, Lee C C, Sheridan S C, et al. 2019. Subseasonal atmospheric regimes and ocean background forcing of Pacific Arctic sea ice melt onset. Climate Dynamics, 52(9−10): 5657–5672. doi: 10.1007/s00382-018-4467-x
    [7]
    Barber D G, Thomas A. 1998. The influence of cloud cover on the radiation budget, physical properties, and microwave scattering coefficient (/spl sigma//spl deg/) of first-year and multiyear sea ice. IEEE Transactions on Geoscience and Remote Sensing, 36(1): 38–50. doi: 10.1109/36.655316
    [8]
    Barry R G, Serreze M C, Maslanik J A, et al. 1993. The Arctic sea ice-climate system: observations and modeling. Reviews of Geophysics, 31(4): 397–422. doi: 10.1029/93RG01998
    [9]
    Belchansky G I, Douglas D C, Mordvintsev I N, et al. 2004a. Estimating the time of melt onset and freeze onset over Arctic sea-ice area using active and passive microwave data. Remote Sensing of Environment, 92(1): 21–39. doi: 10.1016/j.rse.2004.05.001
    [10]
    Belchansky G I, Douglas D C, Platonov N G. 2004b. Duration of the Arctic sea ice melt season: regional and interannual variability, 1979–2001. Journal of Climate, 17(1): 67–80. doi: 10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
    [11]
    Bi Haibo, Fu Min, Sun Ke, et al. 2016. Arctic sea ice thickness changes in terms of sea ice age. Acta Oceanologica Sinica, 35(10): 1–10. doi: 10.1007/s13131-016-0922-x
    [12]
    Bi Haibo, Yang Qinghua, Liang Xi, et al. 2019. Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean. The Cryosphere, 13(5): 1423–1439. doi: 10.5194/tc-13-1423-2019
    [13]
    Bliss A C, Anderson M R. 2014a. Daily area of snow melt onset on Arctic sea ice from passive microwave satellite observations 1979–2012. Remote Sensing, 6(11): 11283–11314. doi: 10.3390/rs61111283
    [14]
    Bliss A C, Anderson M R. 2014b. Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012. The Cryosphere, 8(6): 2089–2100. doi: 10.5194/tc-8-2089-2014
    [15]
    Bliss A C, Anderson M R. 2018. Arctic sea ice melt onset timing from passive microwave-based and surface air temperature-based methods. Journal of Geophysical Research: Atmospheres, 123(17): 9063–9080. doi: 10.1029/2018JD028676
    [16]
    Bliss A C, Miller J A, Meier W N. 2017. Comparison of passive microwave-derived early melt onset records on Arctic sea ice. Remote Sensing, 9(3): 199. doi: 10.3390/rs9030199
    [17]
    Bliss A C, Steele M, Peng Ge, et al. 2019. Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record. Environmental Research Letters, 14(4): 045003. doi: 10.1088/1748-9326/aafb84
    [18]
    Box J E, Colgan W T, Christensen T R, et al. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters, 14(4): 045010. doi: 10.1088/1748-9326/aafclb
    [19]
    Chen Shangfeng, Yu Bin, Chen Wen. 2014. An analysis on the physical process of the influence of AO on ENSO. Climate Dynamics, 42(3−4): 973–989. doi: 10.1007/s00382-012-1654-z
    [20]
    Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9): 627–637. doi: 10.1038/NGEO2234
    [21]
    Curry J A, Schramm J L, Ebert E E. 1995. Sea ice-albedo climate feedback mechanism. Journal of Climate, 8(2): 240–247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [22]
    Da Silva R M, Santos C A G, Moreira M, et al. 2015. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, 77(2): 1205–1221. doi: 10.1007/s11069-015-1644-7
    [23]
    Drobot S D, Anderson M R. 2001a. An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and special sensor microwave/imager data. Journal of Geophysical Research: Atmospheres, 106(D20): 24033–24049. doi: 10.1029/2000JD000171
    [24]
    Drobot S D, Anderson M R. 2001b. Comparison of interannual snowmelt-onset dates with atmospheric conditions. Annals of Glaciology, 33: 79–84. doi: 10.3189/172756401781818851
    [25]
    Fu Guobin, Yu Jingjie, Yu Xiubo, et al. 2013. Temporal variation of extreme rainfall events in China, 1961–2009. Journal of Hydrology, 487: 48–59. doi: 10.1016/j.jhydrol.2013.02.021
    [26]
    Huang Yiyi, Dong Xiquan, Xi Baike, et al. 2019. A survey of the atmospheric physical processes key to the onset of Arctic sea ice melt in spring. Climate Dynamics, 52(7−8): 4907–4922. doi: 10.1007/s00382-018-4422-x
    [27]
    Jevrejeva S, Moore J C, Grinsted A. 2003. Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. Journal of Geophysical Research: Atmospheres, 108(D21): 4677. doi: 10.1029/2003JD003417
    [28]
    Jezek K C, Merry C, Cavalieri D, et al. 1991. Comparison between SMMR and SSM/I Passive Microwave Data Collected over the Antarctic Ice Sheet. Columbus, NY: Byrd Polar Research Center, The Ohio State University, 1–62
    [29]
    Kendall M G. 1948. Rank Correlation Methods. London: Charles Griffin
    [30]
    Kwok R, Cunningham G F, Nghiem S V. 2003. A study of the onset of melt over the Arctic Ocean in RADARSAT synthetic aperture radar data. Journal of Geophysical Research: Oceans, 108(C11): 3363. doi: 10.1029/2002JC001363
    [31]
    Lemke P, Ren J, Alley R B, et al. 2007. Observations: changes in snow, ice and frozen ground, climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, et al, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 337–383
    [32]
    Liuzzo L, Bono E, Sammartano V, et al. 2016. Analysis of spatial and temporal rainfall trends in Sicily during the 1921–2012 period. Theoretical and Applied Climatology, 126(1−2): 113–129. doi: 10.1007/s00704-015-1561-4
    [33]
    Maksimovich E, Vihma T. 2012. The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. Journal of Geophysical Research: Oceans, 117(C7): C07012. doi: 10.1029/2011JC007220
    [34]
    Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245–259. doi: 10.2307/1907187
    [35]
    Markus T, Stroeve J C, Miller J. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10.1029/2009JC005436
    [36]
    Meier W, Fetterer F, Duerr R, et al. 2017. NOAA/NSIDC climate data record of passive microwave sea ice concentration, Version 3. Boulder, CO: National Snow and Ice Data Center
    [37]
    Moritz R E, Bitz C M, Steig E J. 2002. Dynamics of recent climate change in the Arctic. Science, 297(5586): 1497–1502. doi: 10.1126/science.1076522
    [38]
    Mortin J, Svensson G, Graversen R G, et al. 2016. Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophysical Research Letters, 43: 6636–6642,
    [39]
    Pachauri R K, Allen M R, Barros V R, et al. 2014. Climate change 2014: synthesis report. In: Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC
    [40]
    Perovich D K, Nghiem S V, Markus T, et al. 2007. Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system. Journal of Geophysical Research: Oceans, 112. doi: 10.1029/2006JC003558
    [41]
    Rigor I G, Colony R L, Martin S. 2000. Variations in surface air temperature observations in the Arctic, 1979–97. Journal of Climate, 13(5): 896–914. doi: 10.1175/1520-0442(2000)013<0896:visato>2.0.co;2
    [42]
    Rigor I G, Wallace J M, Colony R L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18): 2648–2663. doi: 10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
    [43]
    Sen P K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American statistical association, 63: 1379–1389. doi: 10.2307/2285891
    [44]
    Singh R K, Singh T V, Singh U S. 2020. Long-term observation of the Arctic sea ice melt onset from microwave radiometry. Journal of the Indian Society of Remote Sensing, 1–8. doi: 10.1007/s12524-020-01220-6
    [45]
    Smith D M. 1998. Observation of perennial Arctic sea ice melt and freeze-up using passive microwave data. Journal of Geophysical Research: Oceans, 103: 27753–27769. doi: 10.1029/98jc02416
    [46]
    Stroeve J C, Markus T, Boisvert L, et al. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters, 41: 1216–1225. doi: 10.1002/2013GL058951
    [47]
    Stroeve J, Markus T, Meier W N, et al. 2006. Recent changes in the Arctic melt season. Annals of Glaciology, 44: 367–374. doi: 10.1002/2013gl058951
    [48]
    Stroeve J, Maslanik J, Li X. 1998. An intercomparison of DMSP F11-and F13-derived sea ice products. Remote Sensing of Environment, 64: 132–152. doi: 10.1016/s0034-4257(97)00174-0
    [49]
    Stroeve J, Notz D. 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13: 103001. doi: 10.1088/1748-9326/aade56
    [50]
    Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical research letters, 25(9): 1297–1300. doi: 10.1029/98gl00950
    [51]
    Wang Y, Bi H, Huang H, et al. 2019. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. Journal of Oceanology and Limnology, 37(1): 18–37. doi: 10.1007/s00343-019-7284-0
    [52]
    Winebrenner D P, Nelson E D, Colony R, et al. 1994. Observation of melt onset on multiyear Arctic sea ice using the ERS 1 synthetic aperture radar. Journal of Geophysical Research: Oceans, 99: 22425–22441. doi: 10.1029/94jc01268
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (112) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return