Volume 40 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Xiaogang Chen, Jinzhou Du, Xueqing Yu, Xiaoxiong Wang. Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2021, 40(8): 32-43. doi: 10.1007/s13131-021-1797-z
Citation: Xiaogang Chen, Jinzhou Du, Xueqing Yu, Xiaoxiong Wang. Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2021, 40(8): 32-43. doi: 10.1007/s13131-021-1797-z

Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary

doi: 10.1007/s13131-021-1797-z
Funds:  The Natural Science Foundation of Shanghai under contract No. 19ZR1415300; the Zhejiang Provincial Natural Science Foundation of China under contract No. LQ21D060005; the China Postdoctoral Science Foundation under contract No. 2020M681931.
More Information
  • Corresponding author: Jinzhou Du E-mail address: jzdu@sklec.ecnu.edu.cn
  • Received Date: 2020-05-27
  • Accepted Date: 2020-07-30
  • Available Online: 2021-07-08
  • Publish Date: 2021-08-31
  • Saltmarshes are one of the most productive ecosystems, which contribute significantly to coastal nutrient and carbon budgets. However, limited information is available on soil nutrient and carbon losses via porewater exchange in saltmarshes. Here, porewater exchange and associated fluxes of nutrients and dissolved inorganic carbon (DIC) in the largest saltmarsh wetland (Chongming Dongtan) in the Changjiang River Estuary were quantified. Porewater exchange rate was estimated to be (37±35) cm/d during December 2017 using a radon (222Rn) mass balance model. The porewater exchange delivered 67 mmol/(m2·d), 38 mmol/(m2·d) and 2 690 mmol/(m2·d) of dissolved inorganic nitrogen (DIN), dissolved silicon (DSi) and DIC into the coastal waters, respectively. The dominant species of porewater DIN was ${\rm {NH}}_4^+ $ (>99% of DIN). However, different with those in other ecosystems, the dissolved inorganic phosphorus (DIP) concentration in saltmarsh porewater was significantly lower than that in surface water, indicating that saltmarshes seem to be a DIP sink in Chongming Dongtan. The porewater-derived DIN, DSi and DIC accounted for 12%, 5% and 18% of the riverine inputs, which are important components of coastal nutrient and carbon budgets. Furthermore, porewater-drived nutrients had obviously high N/P ratios (160–3 995), indicating that the porewater exchange process may change the nutrient characteristics of the Changjiang River Estuary and further alter the coastal ecological environment.
  • loading
  • [1]
    Atekwana E A, Tedesco L P, Jackson L R. 2003. Dissolved inorganic carbon (DIC) and hydrologic mixing in a subtropical riverine estuary, southwest Florida, USA. Estuaries, 26(6): 1391–1400. doi: 10.1007/BF02803648
    [2]
    Bouillon S, Middelburg J J, Dehairs F, et al. 2007. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences, 4(3): 311–322. doi: 10.5194/bg-4-311-2007
    [3]
    Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1–2): 3–33
    [4]
    Burnett W C, Dulaiova H. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69(1–2): 21–35. doi: 10.1016/S0265-931X(03)00084-5
    [5]
    Burnett W C, Dulaiova H. 2006. Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Continental Shelf Research, 26(7): 862–873. doi: 10.1016/j.csr.2005.12.003
    [6]
    Burnett W C, Taniguchi M, Oberdorfer J. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 46(2): 109–116. doi: 10.1016/S1385-1101(01)00075-2
    [7]
    Burnett W C, Wattayakorn G, Taniguchi M, et al. 2007. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Continental Shelf Research, 27(2): 176–190. doi: 10.1016/j.csr.2006.09.006
    [8]
    Cai Pinghe, Shi Xiangming, Hong Qingquan, et al. 2015. Using 224Ra/228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary. Geochimica et Cosmochimica Acta, 170: 188–203. doi: 10.1016/j.gca.2015.08.015
    [9]
    Cai Pinghe, Shi Xiangming, Moore W S, et al. 2014. 224Ra: 228Th disequilibrium in coastal sediments: implications for solute transfer across the sediment-water interface. Geochimica et Cosmochimica Acta, 125: 68–84. doi: 10.1016/j.gca.2013.09.029
    [10]
    Cai Weijun, Wang Yongchen, Krest J, et al. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochimica et Cosmochimica Acta, 67(4): 631–639. doi: 10.1016/S0016-7037(02)01167-5
    [11]
    Cai Pinghe, Wei Lin, Geibert W, et al. 2020. Carbon and nutrient export from intertidal sand systems elucidated by 224Ra/228Th disequilibria. Geochimica et Cosmochimica Acta, 274: 302–316. doi: 10.1016/j.gca.2020.02.007
    [12]
    Charette M A. 2007. Hydrologic forcing of submarine groundwater discharge: insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnology and Oceanography, 52(1): 230–239. doi: 10.4319/lo.2007.52.1.0230
    [13]
    Charette M A, Henderson P B, Breier C F, et al. 2013. Submarine groundwater discharge in a river-dominated Florida estuary. Marine Chemistry, 156: 3–17. doi: 10.1016/j.marchem.2013.04.001
    [14]
    Chen Xiaogang, Cukrov N, Santos I R, et al. 2020a. Karstic submarine groundwater discharge into the Mediterranean: radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochimica et Cosmochimica Acta, 268: 467–484. doi: 10.1016/j.gca.2019.08.019
    [15]
    Chen Xiaogang, Lao Yanling, Wang Jinlong, et al. 2018a. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture. Geochemistry, Geophysics, Geosystem, 19(3): 932–951. doi: 10.1002/2017GC007330
    [16]
    Chen Xiaogang, Santos I R, Call M, et al. 2021. The mangrove CO2 pump: tidally driven pore-water exchange. Limnology and Oceanography, 66(4): 1563–1577. doi: 10.1002/lno.11704
    [17]
    Chen Xiaogang, Wang Jinlong, Cukrov N, et al. 2019. Porewater-derived nutrient fluxes in a coastal aquifer (Shengsi Island, China) and its implication. Estuarine, Coastal and Shelf Science, 218: 204–211. doi: 10.1016/j.ecss.2018.12.019
    [18]
    Chen Xiaogang, Ye Qi, Sanders C J, et al. 2020b. Bacterial-derived nutrient and carbon source-sink behaviors in a sandy beach subterranean estuary. Marine Pollution Bulletin, 160: 111570. doi: 10.1016/j.marpolbul.2020.111570
    [19]
    Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. 2018b. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?. Journal of Geophysical Research: Oceans, 123(9): 6962–6979. doi: 10.1029/2018JC014448
    [20]
    Cook P G, Rodellas V, Stieglitz T C. 2018. Quantifying surface water, porewater, and groundwater interactions using tracers: tracer fluxes, water fluxes, and end-member concentrations. Water Resources Research, 54(3): 2452–2465. doi: 10.1002/2017WR021780
    [21]
    Corbett D R, Burnett W C, Cable P H, et al. 1998. A multiple approach to the determination of radon fluxes from sediments. Journal of Radioanalytical and Nuclear Chemistry, 236(1–2): 247–253. doi: 10.1007/BF02386351
    [22]
    Correa R E, Tait D R, Sanders C J, et al. 2020. Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia). Journal of Hydrology, 580: 124262. doi: 10.1016/j.jhydrol.2019.124262
    [23]
    Cyronak T, Santos I R, Erler D V, et al. 2013. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences, 10(4): 2467–2480. doi: 10.5194/bg-10-2467-2013
    [24]
    Faber P A, Evrard V, Woodland R J, et al. 2014. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets. Limnology and Oceanography, 59(5): 1749–1763. doi: 10.4319/lo.2014.59.5.1749
    [25]
    Gan Xiaojing, Cai Yinting, Choi C, et al. 2009. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuarine, Coastal and Shelf Science, 83(2): 211–218. doi: 10.1016/j.ecss.2009.03.026
    [26]
    Ge Zhenming, Guo Haiqiang, Zhao Bin, et al. 2015. Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: insights from leaf to ecosystem. Journal of Geophysical Research: Biogeosciences, 120(1): 169–186. doi: 10.1002/2014JG002736
    [27]
    Gu Hequan, Moore W S, Zhang Lei, et al. 2012. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea. Continental Shelf Research, 35: 95–107. doi: 10.1016/j.csr.2012.01.002
    [28]
    Guo Haiqiang, Noormets A, Zhao Bin, et al. 2009. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland. Agricultural and Forest Meteorology, 149(11): 1820–1828. doi: 10.1016/j.agrformet.2009.06.010
    [29]
    Guo Xiaoyi, Xu Bochao, Burnett W C, et al. 2020. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary?. Science of the Total Environment, 719: 137450. doi: 10.1016/j.scitotenv.2020.137450
    [30]
    Gutiérrez J L, Jones C G, Ribeiro P D, et al. 2018. Crab burrowing limits surface litter accumulation in a temperate salt marsh: implications for ecosystem functioning and connectivity. Ecosystems, 21(5): 1000–1012. doi: 10.1007/s10021-017-0200-6
    [31]
    Hong Qingquan, Cai Pinghe, Shi Xiangming, et al. 2017. Solute transport into the Jiulong River estuary via pore water exchange and submarine groundwater discharge: new insights from 224Ra/228Th disequilibrium. Geochimica et Cosmochimica Acta, 198: 338–359. doi: 10.1016/j.gca.2016.11.002
    [32]
    Hu Yu, Li Yanli, Wang Lei, et al. 2012. Variability of soil organic carbon reservation capability between coastal salt marsh and riverside freshwater wetland in Chongming Dongtan and its microbial mechanism. Journal of Environmental Sciences, 24(6): 1053–1063. doi: 10.1016/S1001-0742(11)60877-2
    [33]
    Ji Tao. 2013. Using radium isotopes to trace submarine groundwater discharge in the coastal area of East China Sea and the Lagoon in the East of Hainan Island (in Chinese)[dissertation]. Shanghai: East China Normal University
    [34]
    Ji Tao, Du Jinzhou, Moore W S, et al. 2013. Nutrient inputs to a Lagoon through submarine groundwater discharge: the case of Laoye Lagoon, Hainan, China. Journal of Marine Systems, 111−112: 253–262. doi: 10.1016/j.jmarsys.2012.11.007
    [35]
    Jiang Zengjie, Li Jiaqi, Qiao Xudong, et al. 2015. The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay, Shandong, China. Aquaculture, 446: 167–174. doi: 10.1016/j.aquaculture.2014.12.043
    [36]
    Kantún-Manzano C A, Herrera-Silveira J A, Arcega-Cabrera F. 2018. Influence of coastal submarine groundwater discharges on seagrass communities in a subtropical karstic environment. Bulletin of Environmental Contamination and Toxicology, 100(1): 176–183. doi: 10.1007/s00128-017-2259-3
    [37]
    Kim G, Burnett W C, Dulaiova H, et al. 2001. Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor. Environmental Science & Technology, 35(23): 4680–4683
    [38]
    Krest J M, Moore W S, Gardner L R, et al. 2000. Marsh nutrient export supplied by groundwater discharge: evidence from radium measurements. Global Biogeochemical Cycles, 14(1): 167–176. doi: 10.1029/1999GB001197
    [39]
    Kristensen E, Alongi D M. 2006. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography, 51(4): 1557–1571. doi: 10.4319/lo.2006.51.4.1557
    [40]
    Lee S, Currell M, Cendón D I. 2016. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance. Science of the Total Environment, 544: 995–1007. doi: 10.1016/j.scitotenv.2015.12.014
    [41]
    Lee R Y, Porubsky W P, Feller I C, et al. 2008. Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochemistry, 87(2): 181–198. doi: 10.1007/s10533-008-9176-9
    [42]
    Li Yanli, Wang Lei, Zhang Wenquan, et al. 2010. Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan. Ecological Engineering, 36(12): 1754–1760. doi: 10.1016/j.ecoleng.2010.07.029
    [43]
    Li Xing, Zhou Yunxuan, Zhang Lianpeng, et al. 2014. Shoreline change of Chongming Dongtan and response to river sediment load: a remote sensing assessment. Journal of Hydrology, 511: 432–442. doi: 10.1016/j.jhydrol.2014.02.013
    [44]
    Liang Chao, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2: 17105. doi: 10.1038/nmicrobiol.2017.105
    [45]
    Liu Qian, Charette M A, Breier C F, et al. 2017. Carbonate system biogeochemistry in a subterranean estuary-Waquoit Bay, USA. Geochimica et Cosmochimica Acta, 203: 422–439. doi: 10.1016/j.gca.2017.01.041
    [46]
    Liu Qian, Dai Minhan, Chen Weifang, et al. 2012. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?. Biogeosciences, 9(5): 1777–1795. doi: 10.5194/bg-9-1777-2012
    [47]
    Liu Sumei, Hong G H, Zhang Jianmin, et al. 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2245–2263. doi: 10.5194/bg-6-2245-2009
    [48]
    Liu Jianan, Hrustić E, Du Jinzhou, et al. 2019. Net submarine groundwater-derived dissolved inorganic nutrients and carbon input to the oligotrophic stratified karstic estuary of the Krka River (Adriatic Sea, Croatia). Journal of Geophysical Research: Oceans, 124(6): 4334–4349. doi: 10.1029/2018JC014814
    [49]
    Liu Jianan, Yu Xueqing, Chen Xiaogang, et al. 2021. Utility of radium quartet for evaluating porewater-derived carbon to a saltmarsh nearshore water: implications for blue carbon export. Science of the Total Environment, 764: 144238. doi: 10.1016/j.scitotenv.2020.144238
    [50]
    Luo Pengzhou, Yang Yi, Wang Hongtao, et al. 2018. Water footprint and scenario analysis in the transformation of Chongming into an international eco-island. Resources, Conservation and Recycling, 132: 376–385. doi: 10.1016/j.resconrec.2017.07.026
    [51]
    Ma Zhijun, Wang Yong, Gan Xiaojing, et al. 2009. Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River estuary, China. Environmental Management, 43(6): 1187–1200. doi: 10.1007/s00267-008-9247-7
    [52]
    Macintyre S, Wanninkhof R, Chanton J P. 1995. Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Matson P A, Harris R C, eds. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Oxford, UK: Blackwell, 52−57
    [53]
    Maher D T, Santos I R, Golsby-Smith L, et al. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?. Limnology and Oceanography, 58(2): 475–488. doi: 10.4319/lo.2013.58.2.0475
    [54]
    Martens C S, Kipphut G W, Van Klump J. 1980. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science, 208(4441): 285–288. doi: 10.1126/science.208.4441.285
    [55]
    Mcleod E, Chmura G L, Bouillon S, et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552–560. doi: 10.1890/110004
    [56]
    Moore W S, Arnold R. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1): 1321–1329. doi: 10.1029/95JC03139
    [57]
    Moore W S, Blanton J O, Joye S B. 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research: Oceans, 111(C9): C09006
    [58]
    Null K A, Knee K L, Crook E D, et al. 2014. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Continental Shelf Research, 77: 38–50. doi: 10.1016/j.csr.2014.01.011
    [59]
    Oehler T, Bakti H, Lubis R F, et al. 2019. Nutrient dynamics in submarine groundwater discharge through a coral reef (western Lombok, Indonesia). Limnology and Oceanography, 64(6): 2646–2661. doi: 10.1002/lno.11240
    [60]
    Patrick Jr W H, Delaune R D. 1976. Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuarine and Coastal Marine Science, 4(1): 59–64. doi: 10.1016/0302-3524(76)90006-2
    [61]
    Peng T H, Takahashi T, Broecker W S. 1974. Surface radon measurements in the North Pacific Ocean station Papa. Journal of Geophysical Research, 79(12): 1772–1780. doi: 10.1029/JC079i012p01772
    [62]
    Pilson M E Q. 1998. An Introduction to the Chemistry of the Sea. Upper Saddle River, New Jersey: Prentice Hall
    [63]
    Ray R, Baum A, Rixen T, et al. 2018. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Science of the Total Environment, 621: 535–547. doi: 10.1016/j.scitotenv.2017.11.225
    [64]
    Reithmaier G M S, Chen Xiaogang, Santos I R, et al. 2021. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary. Estuarine, Coastal and Shelf Science, 249: 107064. doi: 10.1016/j.ecss.2020.107064
    [65]
    Rocha C, Wilson J, Scholten J, et al. 2015. Retention and fate of groundwater-borne nitrogen in a coastal bay (Kinvara Bay, Western Ireland) during summer. Biogeochemistry, 125(2): 275–299. doi: 10.1007/s10533-015-0116-1
    [66]
    Rodellas V, Garcia-Orellana J, Trezzi G, et al. 2017. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. Geochimica et Cosmochimica Acta, 196: 58–73. doi: 10.1016/j.gca.2016.09.016
    [67]
    Sadat-Noori M, Maher D T, Santos I R. 2016. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries and Coasts, 39(3): 639–656. doi: 10.1007/s12237-015-0042-4
    [68]
    Sadat-Noori M, Tait D R, Maher D T, et al. 2018. Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuarine, Coastal and Shelf Science, 207: 499–509. doi: 10.1016/j.ecss.2017.05.020
    [69]
    Santos I R, Chen X, Lecher A L, et al. 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5): 307–323
    [70]
    Santos I R, Cook P L M, Rogers L, et al. 2012a. The “salt wedge pump”: convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnology and Oceanography, 57(5): 1415–1426. doi: 10.4319/lo.2012.57.5.1415
    [71]
    Santos I R, de Weys J, Tait D R, et al. 2013. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuaries and Coasts, 36(1): 56–73. doi: 10.1007/s12237-012-9561-4
    [72]
    Santos I R, Eyre B D, Huettel M. 2012b. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal and Shelf Science, 98: 1–15. doi: 10.1016/j.ecss.2011.10.024
    [73]
    Santos I R, Maher D T, Larkin R, et al. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography, 64(3): 996–1013. doi: 10.1002/lno.11090
    [74]
    Shi Xiangming, Benitez-Nelson C R, Cai Pinghe, et al. 2019. Development of a two-layer transport model in layered muddy-permeable marsh sediments using 224Ra-228Th disequilibria. Limnology and Oceanography, 64(4): 1672–1687. doi: 10.1002/lno.11143
    [75]
    Slomp C P, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1–4): 64–86. doi: 10.1016/j.jhydrol.2004.02.018
    [76]
    Su Ni, Burnett W C, MacIntyre H L, et al. 2014. Natural radon and radium isotopes for assessing groundwater discharge into Little Lagoon, AL: implications for harmful algal blooms. Estuaries and Coasts, 37(4): 893–910. doi: 10.1007/s12237-013-9734-9
    [77]
    Sugimoto R, Honda H, Kobayashi S, et al. 2016. Seasonal changes in submarine groundwater discharge and associated nutrient transport into a tideless semi-enclosed embayment (Obama Bay, Japan). Estuaries and Coasts, 39(1): 13–26. doi: 10.1007/s12237-015-9986-7
    [78]
    Szymczycha B, Maciejewska A, Winogradow A, et al. 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?. Oceanologia, 56(2): 327–347. doi: 10.5697/oc.56-2.327
    [79]
    Taillardat P, Willemsen P, Marchand C, et al. 2018. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam). Journal of hydrology, 563: 303–318. doi: 10.1016/j.jhydrol.2018.05.042
    [80]
    Tait D R, Maher D T, Macklin P A, et al. 2016. Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters, 43(7): 3334–3341. doi: 10.1002/2016GL068289
    [81]
    Tamborski J J, Cochran J K, Bokuniewicz H J. 2017. Submarine groundwater discharge driven nitrogen fluxes to Long Island Sound, NY: terrestrial vs. marine sources. Geochimica et Cosmochimica Acta, 218: 40–57. doi: 10.1016/j.gca.2017.09.003
    [82]
    Tan Ehui, Wang Guizhi, Moore W S, et al. 2018. Shelf-Scale submarine groundwater discharge in the northern South China Sea and East China Sea and its geochemical impacts. Journal of Geophysical Research: Oceans, 123(4): 2997–3013. doi: 10.1029/2017JC013405
    [83]
    Tang Jianwu, Ye Shufeng, Chen Xuechu, et al. 2018. Coastal blue carbon: concept, study method, and the application to ecological restoration. Science China Earth Sciences, 61(6): 637–646. doi: 10.1007/s11430-017-9181-x
    [84]
    Taniguchi M, Dulai H, Burnett K M, et al. 2019. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Frontiers in Environmental Science, 7: 141. doi: 10.3389/fenvs.2019.00141
    [85]
    Tobias C, Neubauer S C. 2019. Salt marsh biogeochemistry—an overview. In: Perillo G M E, Wolanski E, Cahoon D R, et al, eds. Coastal Wetlands. 2nd ed. Amsterdam, the Netherlands: Elsevier, 539−596
    [86]
    Tse K C, Jiao J J. 2008. Estimation of submarine groundwater discharge in plover cove, Tolo harbour, Hong Kong by 222Rn. Marine Chemistry, 111(3–4): 160–170. doi: 10.1016/j.marchem.2008.04.012
    [87]
    Urquidi-Gaume M, Santos I R, Lechuga-Deveze C. 2016. Submarine groundwater discharge as a source of dissolved nutrients to an arid coastal embayment (La Paz, Mexico). Environmental Earth Sciences, 75(2): 154. doi: 10.1007/s12665-015-4891-8
    [88]
    Wang Guizhi, Han Aiqin, Chen Liwen, et al. 2018a. Fluxes of dissolved organic carbon and nutrients via submarine groundwater discharge into subtropical Sansha Bay, China. Estuarine, Coastal and Shelf Science, 207: 269–282. doi: 10.1016/j.ecss.2018.04.018
    [89]
    Wang Guizhi, Jing Wenping, Wang Shuling, et al. 2014. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environmental Science & Technology, 48(22): 13069–13075
    [90]
    Wang Xuejing, Li Hailong, Zhang Yan, et al. 2019. Submarine groundwater discharge revealed by 222Rn: comparison of two continuous on-site 222Rn-in-water measurement methods. Hydrogeology Journal, 27(5): 1879–1887. doi: 10.1007/s10040-019-01988-z
    [91]
    Wang Xuejing, Li Hailong, Zheng Chunmiao, et al. 2018b. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica et Cosmochimica Acta, 225: 52–65. doi: 10.1016/j.gca.2018.01.029
    [92]
    Wang Xilong, Su Kaijun, Chen Xiaogang, et al. 2021. Submarine groundwater discharge-driven nutrient fluxes in a typical mangrove and aquaculture bay of the Beibu Gulf, China. Marine Pollution Bulletin, 168: 112500. doi: 10.1016/j.marpolbul.2021.112500
    [93]
    Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. 2015. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochimica et Cosmochimica Acta, 149: 103–114. doi: 10.1016/j.gca.2014.11.001
    [94]
    Wen Tingyu. 2013. Estimating submarine groundwater discharge via radon isotope: the case of Sanggou Bay and Xiangshan, China (in Chinese)[dissertation]. Shanghai: East China Normal University
    [95]
    White D S, Howes B L. 1994. Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnology and Oceanography, 39(8): 1878–1892. doi: 10.4319/lo.1994.39.8.1878
    [96]
    Xiao Kai, Li Gang, Li Hailong, et al. 2019. Combining hydrological investigations and radium isotopes to understand the environmental effect of groundwater discharge to a typical urbanized estuary in China. Science of the Total Environment, 695: 133872. doi: 10.1016/j.scitotenv.2019.133872
    [97]
    Xiao Kai, Wilson A M, Li Hailong, et al. 2021. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnology and Oceanography, 66(1): 14–29. doi: 10.1002/lno.11582
    [98]
    Xin P, Jin Guangqiu, Li Ling, et al. 2009. Effects of crab burrows on pore water flows in salt marshes. Advances in Water Resources, 32(3): 439–449. doi: 10.1016/j.advwatres.2008.12.008
    [99]
    Xu Bochao, Xia Dong, Burnett W C, et al. 2014. Natural 222Rn and 220Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China. Applied Geochemistry, 51: 79–85. doi: 10.1016/j.apgeochem.2014.09.018
    [100]
    Yang Shilun. 1999. A study of coastal morphodynamics on the muddy islands in the Changjiang River estuary. Journal of Coastal Research, 15(1): 32–44
    [101]
    Ye Qi, Liu Jianan, Du Jinzhou, et al. 2016. Bacterial diversity in submarine groundwater along the coasts of the Yellow Sea. Frontiers in Microbiology, 6: 1519
    [102]
    Yi Lixin, Ma Bo, Liu Lingling, et al. 2016. Simulation of groundwater-seawater interaction in the coastal surficial aquifer in Bohai Bay, Tianjin, China. Estuarine, Coastal and Shelf Science, 177: 20–30. doi: 10.1016/j.ecss.2016.05.006
    [103]
    Young M B, Gonneea M E, Herrera-Silveira J, et al. 2005. Export of dissolved and particulate carbon and nitrogen from a mangrove-dominated lagoon, Yucatan Peninsula, Mexico. International Journal of Ecology and Environmental Sciences, 31(3): 189–202
    [104]
    Zhang Lei. 2007. Radium isotopes in Changjiang River Estuary/East China Sea and their application in analysis of mixing among multiple water masses (in Chinese)[dissertation]. Shanghai: East China Normal University
    [105]
    Zhang Yan, Li Hailong, Wang Xuejing, et al. 2016. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 533: 103–113. doi: 10.1016/j.jhydrol.2015.11.027
    [106]
    Zhang Jing, Liu Sumei, Ren Jingling, et al. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74(4): 449–478. doi: 10.1016/j.pocean.2007.04.019
    [107]
    Zhang Longjun, Xue Ming, Wang Min, et al. 2014. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. Journal of Geophysical Research: Biogeosciences, 119(5): 741–757. doi: 10.1002/2012JG002230
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (1112) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return