Volume 40 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Yuanli Hou, Weilin Zhu, Peijun Qiao, Chi-Yue Huang, Yuchi Cui, Xianbo Meng. Sediment source and environment evolution in Taiwan Island during the Eocene–Miocene[J]. Acta Oceanologica Sinica, 2021, 40(2): 114-122. doi: 10.1007/s13131-021-1756-8
Citation: Yuanli Hou, Weilin Zhu, Peijun Qiao, Chi-Yue Huang, Yuchi Cui, Xianbo Meng. Sediment source and environment evolution in Taiwan Island during the Eocene–Miocene[J]. Acta Oceanologica Sinica, 2021, 40(2): 114-122. doi: 10.1007/s13131-021-1756-8

Sediment source and environment evolution in Taiwan Island during the Eocene–Miocene

doi: 10.1007/s13131-021-1756-8
Funds:  The National Natural Science Foundation of China under contract Nos 42076066, 41874076 and 92055203; the National Key Research and Development Program of China under contract No. 2018YFE0202400; the National Science and Technology Major Project under contract No. 2016ZX05026004-002.
More Information
  • Corresponding author: Email: zhuwl@tongji.edu.cn
  • Received Date: 2019-09-29
  • Accepted Date: 2020-06-16
  • Available Online: 2021-04-02
  • Publish Date: 2021-04-02
  • Taiwan Island’s outcropping strata can provide important insights into the sedimentary environment and source development of the southeast China margin. This research is based on the Eocene–Miocene strata of the Tsukeng area in the central Western Foothills, northeast shoreline of Taiwan Island and two sites of the East China Sea Shelf Basin (ECSSB), using petrology and detrital zircon U-Pb age for the analysis. Results show that central and northeast Taiwan Island experienced a transformation from continental to marine facies during the Eocene–Miocene, and the sandstone maturity changed with time. Source analysis shows that sediments from the Eocene–early Oligocene strata mainly originated from near-source Mesozoic rocks, whose zircon age is consistent with the igneous rock in the surrounding area and coastal Cathaysia, showing 120 Ma and 230 Ma peaks in the age spectrum diagram. Since the late Oligocene, peaks of 900 Ma and 1 800 Ma are seen, indicating that deposition of matter from the old block began. The sediments could be a mixture of the surrounding Mesozoic volcanic and fewer pre-Cambrian rocks sourced from the coastal river and sporadic old basement in the ECSSB instead of long-distance transportation.
  • loading
  • [1]
    Cao Licheng, Shao Lei, Qiao Peijun, et al. 2018. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120–131. doi: 10.1016/j.jpgl.2018.05.039
    [2]
    Chen Chenghong, Lee C, Lin Jianwei, et al. 2019. Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 190: 224–246. doi: 10.1016/j.earscirev.2018.12.015
    [3]
    Clark M K, Schoenbohm L M, Royden L H, et al. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006
    [4]
    Cui Yuchi, Shao Lei, Qiao Peijun, et al. 2019. Upper Miocene-Pliocene provenance evolution of the central canyon in northwestern South China Sea. Marine Geophysical Research, 40(2): 223–235. doi: 10.1007/s11001-018-9359-2
    [5]
    Cukur D, Horozal S, Lee G H, et al. 2011. Structural evolution of the northern East China Sea Shelf Basin interpreted from cross-section restoration. Marine Geophysical Research, 32(3): 363–381. doi: 10.1007/s11001-011-9114-4
    [6]
    Deng Kai, Yang Shouye, Bi Lei. 2017a. Reply to comment by Yonghang Xu on “Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland”. Earth-Science Reviews, 168: 235–239. doi: 10.1016/j.earscirev.2017.03.009
    [7]
    Deng Kai, Yang Shouye, Li Chao, et al. 2017b. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland. Earth-Science Reviews, 164: 31–47. doi: 10.1016/j.earscirev.2016.10.015
    [8]
    Dickinson W R, Suczek C A. 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12): 2164–2182
    [9]
    Fan Daidu, Li Congxian, Yokoyama K, et al. 2005. Monazite age spectra in the Late Cenozoic of the Changjiang Delta and its implication on the Changjiang run-through time. Science in China Ser. D Earth Sciences, 48(10): 1718–1727. doi: 10.1360/01YD0447
    [10]
    Hall R. 1996. Reconstructing Cenozoic SE Asia. In: Hall R, Blundell D, eds. Tectonic Evolution of Southeast Asia. London: The Geological Society of London, 106(1): 153–184
    [11]
    Hu Xiumian, Garzanti E, Moore T, et al. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43(10): 859–862. doi: 10.1130/G36872.1
    [12]
    Huang Chi-Yue, Shea K H, Li Qianyu. 2017. A foraminiferal study on Middle Eocene-Oligocene break-up unconformity in northern Taiwan and its correlation with IODP Site U1435 to constrain the onset event of South China Sea opening. Journal of Asian Earth Sciences, 138: 439–465. doi: 10.1016/j.jseaes.2016.09.014
    [13]
    Huang Chi-Yue, Wu Weiyu, Chang Chungpai, et al. 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1–2): 31–51. doi: 10.1016/S0040-1951(97)00157-1
    [14]
    Huang Chi-Yue, Yen Yi, Zhao Quanhong, et al. 2012. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130–3149. doi: 10.1007/s11434-012-5349-y
    [15]
    Huang Chi-Yue, Yuan P B, Lin C W, et al. 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2): 1–21. doi: 10.1016/S0040-1951(00)00128-1
    [16]
    Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. 2010. Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River. Chinese Science Bulletin, 55(15): 1520–1528. doi: 10.1007/s11434-010-3091-x
    [17]
    Jin Bingfu, Lin Xiaotong, Ji Fuwu. 2005. Sediments of upper Pleistocene in core Q43 north of Diaoyu Island in the East China Sea. Marine Geology & Quaternary Geology (in Chinese), 25(1): 25–31
    [18]
    Lan Qing, Yan Yi, Huang Chi-Yue, et al. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36: 376–389. doi: 10.1016/j.gr.2015.07.008
    [19]
    Li Bingfu, Jiao Xiangheng, Liu Baohua. 1995. Discuss on seismic reflection features of volcanic rocks, Diaoyudao uplift, East China Sea. Oil Geophysical Prospecting (in Chinese), 30(S2): 150–154
    [20]
    Li Guiqun, Li Xuelun. 1995. Geological tectonic characteristics of the outer margin upwarped zone of the East China Sea shelf. Journal of Ocean University of Qingdao (in Chinese), 5(2): 199–205
    [21]
    Li Peilian, Hou Hongbin, Ma Huifu. 2000. Tectonics and Petroleum potential of the East China Sea Shelf Rift Basin. Acta Geologica Sinica, 74(3): 651–660
    [22]
    Li Wuxian, Li Xianhua, Li Zhengxiang. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136(1): 51–66. doi: 10.1016/j.precamres.2004.09.008
    [23]
    Li Xianhua. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293–305. doi: 10.1016/S1367-9120(99)00060-7
    [24]
    Li Xianhua, Wei Gangjian, Shao Lei, et al. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth and Planetary Science Letters, 211(3–4): 207–220. doi: 10.1016/S0012-821X(03)00229-2
    [25]
    Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction mode. Geology, 35(2): 179–182. doi: 10.1130/G23193A.1
    [26]
    Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. 2010. Continental and oceanic crust recycling-induced melt-Peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1–2): 537–571. doi: 10.1093/petrology/egp082
    [27]
    Shao Lei, Cao Licheng, Pang Xiong, et al. 2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255–269. doi: 10.1002/2015GC006113
    [28]
    Shao Lei, Cui Yuchi, Stattegger K, et al. 2019. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. GSA Bulletin, 131(3–4): 461–478. doi: 10.1130/B32053.1
    [29]
    Shao Lei, Pang Xiong, Qiao Peijun, et al. 2008. Sedimentary Filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River. Acta Sedimentologica Sinica (in Chinese), 26(2): 179–185
    [30]
    Shao Lei, You Hongqing, Hao Hujun, et al. 2007. Petrology and depositional environments of Mesozoic strata in the Northeastern South China Sea. Geological Review (in Chinese), 53(2): 164–169
    [31]
    Sharp W D, Clague D A. 2006. 50-Ma initiation of Hawaiian-emperor bend records major change in Pacific plate motion. Science, 313(5791): 1281–1284. doi: 10.1126/science.1128489
    [32]
    Sun Tao. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China (in Chinese), 25(3): 332–335
    [33]
    Suo Yanhui, Li Su, Zhao Shujuan, et al. 2015. Continental margin basins in East Asia: tectonic implications of the Meso-Cenozoic East China Sea pull-apart basins. Geological Journal, 50(2): 139–156. doi: 10.1002/gj.2535
    [34]
    Suppe J. 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6: 21–33
    [35]
    Usuki T, Lan C Y, Yui T F, et al. 2009. Early Paleozoic medium-pressure metamorphism in central Vietnam: evidence from SHRIMP U-Pb zircon ages. Geosciences Journal, 13(3): 245–256. doi: 10.1007/s12303-009-0024-2
    [36]
    Vermeesch P. 2012. On the Visualisation of detrital age distributions. Chemical Geology, 312–313: 190–194. doi: 10.1016/j.chemgeo.2012.04.021
    [37]
    Wan Yusheng, Liu Dunyi, Xu Meihui, et al. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1–2): 166–183. doi: 10.1016/j.gr.2006.10.016
    [38]
    Wang Chengshan, Li Xianghui, Hu Xiumian, et al. 2002. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14(2): 114–120. doi: 10.1046/j.1365-3121.2002.00399.x
    [39]
    Wang Guochun, Zhu Weilin. 1992. Cenozoic sedimentary environment in East China Sea Basin. Acta Sedimentologica Sinica (in Chinese), 10(2): 100–108
    [40]
    Wang Pinxian. 2004. Cenozoic deformation and the history of sea-land interactions in Asia. In: Clift P, Kuhnt W, Wang Pinxian, et al, eds. Continent-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 1–22
    [41]
    Wang Qiang, Wyman D A, Li Zhengxiang, et al. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research, 178(1–4): 185–208
    [42]
    Wang Wei, Bidgoli T, Yang Xianghua, et al. 2018. Source-to-sink links between East Asia and Taiwan from detrital zircon geochronology of the oligocene Huagang formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673–3688. doi: 10.1029/2018GC007576
    [43]
    Wang Yangyang, Fan Daidu. 2013. U-Pb ages and Hf Isotopic composition of crystalline zircons from igneous rocks of the Changjiang drainage basin and their implications for provenance. Marine Geology & Quaternary Geology, 33(5): 97–118
    [44]
    Wang Zhangshi, Zhu Weilin, Chen Chunfeng, et al. 2014. Basement lithology and distribution of Lishui-Jiaojiang Cenozoic Sag in East China Sea. Journal of Tongji University (Natural Science) (in Chinese), 42(4): 636–644
    [45]
    Wu Jiapeng, Zhang Lan, Wan Lifen, et al. 2017. Provenance analysis of Pinghu Formation in Xihu sag. China Petroleum Exploration (in Chinese), 22(2): 50–57
    [46]
    Xu Xisheng, O’Reilly S Y, Griffin W L, et al. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1–2): 51–78. doi: 10.1016/j.precamres.2007.04.010
    [47]
    Xu Yonghang, Sun Qinqin, Yi Liang, et al. 2014. Detrital zircons U-Pb age and Hf isotope from the western side of the Taiwan Strait: Implications for sediment provenance and crustal evolution of the northeast Cathaysia block. Terrestrial, Atmospheric and Oceanic Sciences, 25(4): 505–535. doi: 10.3319/TAO.2014.02.18.01(TT)
    [48]
    Yang Xianghua, Li Anchun, Qin Yunshan, et al. 2006. U-P dating of zircons from Cenozoic sandstone: constrain on the geodynamic setting of East China Sea Shelf Basin. Marine Geology & Quaternary Geology (in Chinese), 26(3): 75–86
    [49]
    Yang Zhenning, Yang Kunguang, Polat A, et al. 2018. Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area. Precambrian Research, 309: 248–270. doi: 10.1016/j.precamres.2017.05.011
    [50]
    Yao Jinlong, Shu Liangshu, Santosh M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research, 20(2–3): 553–567. doi: 10.1016/j.gr.2011.01.005
    [51]
    Ye Jiaren, Qing Hairuo, Bend S L, et al. 2007. Petroleum systems in the offshore Xihu Basin on the continental shelf of the East China Sea. AAPG Bulletin, 91(8): 1167–1188. doi: 10.1306/02220705158
    [52]
    Yuan Shengyuan, Li Chang’an, Zhang Yufeng, et al. 2012. Trace element characteristics of sediments in Jianghan Basin: Implications for expansion of the upper reaches of the Yangtze River. Geology in China (in Chinese), 39(4): 1042–1048
    [53]
    Yuan Xuecheng. 1996. Atlas of Geophysics in China (in Chinese). Beijing: Geological Publishing House
    [54]
    Zhang Guohua, Li Sanzhong, Suo Yanhui, et al. 2016. Cenozoic positive inversion tectonics and its migration in the East China Sea Shelf Basin. Geological Journal, 51(S1): 176–187. doi: 10.1002/gj.2809
    [55]
    Zhang Hao, Shao Lei, Zhang Gongcheng, et al. 2020. The response of Cenozoic sedimentary evolution coupled with the formation of the South China Sea. Geological Journal, 55(10): 6989–7010, doi: 10.1002/gj.3856
    [56]
    Zhang Jingyu, Lu Yongchao, Krijgsman W, et al. 2018. Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin. Marine and Petroleum Geology, 98: 733–745. doi: 10.1016/j.marpetgeo.2018.09.014
    [57]
    Zhang Xinchang, Huang Chi-Yue, Wang Yuejun, et al. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634–651. doi: 10.1002/2016TC004357
    [58]
    Zhang Xinchang, Yan Yi, Huang Chi-Yue, et al. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85: 26–39. doi: 10.1016/j.jseaes.2014.01.021
    [59]
    Zheng Hongbo, Clift P D, Wang Ping, et al. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556–7561. doi: 10.1073/pnas.1216241110
    [60]
    Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269–287. doi: 10.1016/S0040-1951(00)00120-7
    [61]
    Zhou Xinmin, Sun Tao, Shen Weizhou, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26–33. doi: 10.18814/epiiugs/2006/v29i1/004
    [62]
    Zhou Zuyi, Jiang Jianyi, Liao Zongting, et al. 2001. Basin inversion in Xihu depression, East China Sea. Gondwana Research, 4(4): 844–845. doi: 10.1016/S1342-937X(05)70627-4
    [63]
    Zhu Weilin, Zhong Kai, Fu Xiaowei, et al. 2019. The formation and evolution of the East China Sea Shelf Basin: a new view. Earth-Science Reviews, 190: 89–111. doi: 10.1016/j.earscirev.2018.12.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (316) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return