Volume 39 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Runqi Huang, Lingling Xie, Quanan Zheng, Mingming Li, Peng Bai, Keyi Tan. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91-102. doi: 10.1007/s13131-020-1678-x
Citation: Runqi Huang, Lingling Xie, Quanan Zheng, Mingming Li, Peng Bai, Keyi Tan. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91-102. doi: 10.1007/s13131-020-1678-x

Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin

doi: 10.1007/s13131-020-1678-x
Funds:  The National Natural Science Foundation of China under contract Nos 41776034 and 41706025; the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) under contract No. ZJW-2019-08; the Special Project of Global Change and Air and Sea Interaction under contract No. GASI-02-SCS-YGST2-02; the Guangdong Province First-Class Discipline Plan under contract Nos CYL231419012 and 231389002; the Scientific Research Setup Fund of Guangdong Ocean University under contract No.101302/R18001.
More Information
  • Corresponding author: E-mail: xiell@gdou.edu.cn
  • Received Date: 2020-06-15
  • Accepted Date: 2020-08-10
  • Available Online: 2020-12-28
  • Publish Date: 2020-11-25
  • Using mesoscale eddy trajectory product derived from satellite altimetry data from 1993 to 2017, this study analyzes the statistical characteristics of spatiotemporal distribution of mesoscale eddy propagation velocities ( C ) in the South China Sea (SCS) deep basin with depths >1 000 m. Climatologically, the zonal propagation velocities (cx) are westwards in the whole basin, and the meridional velocities (cy) are southwards in the northwestern basin, and northwards in the southeastern basin. The variation of cy with longitude is consistent with that of the background meridional currents with correlation coefficient R2 of 0.96, while the variation of cx is related both to the background zonal currents and β effect. The propagation velocities characterize significant seasonality with the minimum magnitude occurring in summer and the maximum in winter for cx and C . Interannually, larger values of cx and cy mostly occurred in La Niña years in the negative phase of the Pacific Decadal Oscillation (PDO). Mesoscale eddies move fast at the beginning and end of their life span, i.e., at their growth and dissipation periods, and slowly during their stable “midlife” period. This trend is negatively correlated with the rotating tangential velocity with R2 of –0.93. Eddies with extreme propagation velocities are defined, which are slower (faster) than 1.5 cm/s (15.4 cm/s) and take 1.5% (1.9%) of the total eddies. The extremely slow-moving (fast-moving) eddies tend to appear in the middle (on the edge) of the basin, and mostly occur in summer (winter). The mechanism analysis reveals that the spatiotemporal distributions of the propagation velocities of mesoscale eddies in the SCS are modulated by the basin-scale background circulation.
  • loading
  • [1]
    Adams D K, McGillicuddy D J Jr, Zamudio L, et al. 2011. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science, 332(6029): 580–583. doi: 10.1126/science.1201066
    [2]
    Bao Ying. 2007. Primary study of the South China Sea circulation inter-annual variation (in Chinese) [dissertation]. Qingdao: Ocean University of China
    [3]
    Benitez-Nelson C R, Bidigare R R, Dickey T D, et al. 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science, 316(5827): 1017–1021. doi: 10.1126/science.1136221
    [4]
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [5]
    Chen Gengxin. 2010. Mesoscale eddies in the South China Sea: Mean properties and spatio-temporal variability (in Chinese) [dissertation]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences
    [6]
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018
    [7]
    Cheng Xuhua, Qi Yiquan. 2008. Distribution and propagation of mesoscale eddies in the global oceans learnt from altimetric data. Advances in Marine Science (in Chinese), 26(4): 447–453
    [8]
    Cheng Xuhua, Qi Yiquan, Wang Weiqiang. 2005. Seasonal and interannual variabilities of mesoscale eddies in South China Sea. Journal of Tropical Oceanography (in Chinese), 24(4): 51–59
    [9]
    Cheng Xuhua, Xie Shangping, Du Yan, et al. 2016. Interannual-to-decadal variability and trends of sea level in the South China Sea. Climate Dynamics, 46(9–10): 3113–3126
    [10]
    Chow C H, Hu J H, Centurioni L R, et al. 2008. Mesoscale Dongsha cyclonic eddy in the northern South China Sea by drifter and satellite observations. Journal of Geophysical Research: Oceans, 113(C4): C04018
    [11]
    Chu Xiaoqing, Dong Changming, Qi Yiquan. 2017. The influence of ENSO on an oceanic eddy pair in the South China Sea. Journal of Geophysical Research: Oceans, 122(3): 1643–1652. doi: 10.1002/2016JC012642
    [12]
    Cui Fengjuan. 2015. Mesoscale eddies in the South China Sea: Identification and statistical characteristics analysis (in Chinese) [dissertation]. Qingdao: Ocean University of China
    [13]
    Frenger I, Münnich M, Gruber N. 2018. Imprint of southern ocean mesoscale eddies on chlorophyll. Biogeosciences, 15(15): 4781–4798. doi: 10.5194/bg-15-4781-2018
    [14]
    Hausmann U, Czaja A. 2012. The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep Sea Research Part I: Oceanographic Research Papers, 70: 60–72. doi: 10.1016/j.dsr.2012.08.005
    [15]
    He Yinghui, Xie Jieshuo, Cai Shuqun. 2016. Interannual variability of winter eddy patterns in the eastern South China Sea. Geophysical Research Letters, 43(10): 5185–5193. doi: 10.1002/2016GL068842
    [16]
    He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2018. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. Journal of Geophysical Research: Oceans, 123(7): 4906–4929. doi: 10.1029/2018JC014054
    [17]
    Hu Jianyu, Kawamura H, Hong Huasheng, et al. 2000. A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography, 56(6): 607–624. doi: 10.1023/A:1011117531252
    [18]
    Huang Yawen, Hua Lijuan, Zhong Linhao, et al. 2016. Characteristics of mesoscale eddies in South China Sea. Journal of University of Chinese Academy of Sciences, 33(1): 97–106
    [19]
    Johnson W K, Miller L A, Sutherland N E, et al. 2005. Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep Sea Research Part II: Topical Studies in Oceanography, 52(7–8): 933–953
    [20]
    Li Jiaxun, Zhang Ren, Jin Baogang. 2011. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Science, 7(5): 661–669. doi: 10.5194/os-7-661-2011
    [21]
    Lin Pengfei. 2005. Statistical analyses on mesoscale eddies in the South China Sea and the Northwest Pacific (in Chinese) [dissertation]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences
    [22]
    Lin Hongyang, Hu Jianyu, Zheng Quanan. 2012a. Satellite altimeter data analysis of the South China Sea and the northwest Pacific Ocean: Statistical features of oceanic mesoscale eddies. Journal of Oceanography in Taiwan Strait (in Chinese), 31(1): 105–113
    [23]
    Lin Hongyang, Hu Jianyu, Zheng Quanan. 2012b. Statistical analysis of the features of meso-scale eddies near the Luzon Strait. Haiyang Xuebao (in Chinese), 34(1): 1–7
    [24]
    Liu Yu, Dong Changming, Guan Yuping, et al. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 68: 54–67. doi: 10.1016/j.dsr.2012.06.001
    [25]
    Lobel P S, Robinson A R. 1986. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep Sea Research Part A. Oceanographic Research Papers, 33(4): 483–500. doi: 10.1016/0198-0149(86)90127-5
    [26]
    Lv Mingkun, Zang Nan, Wang Fan. 2017. Preliminary study mesoscale eddies in the Tropical Western Pacific. Marine Sciences (in Chinese), 41(10): 67
    [27]
    McGillicuddy D J Jr, Robinson A R, Siegel D A, et al. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394(6690): 263–266. doi: 10.1038/28367
    [28]
    Morrow R, Birol F, Griffin D, et al. 2004. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophysical Research Letters, 31(24): L24311. doi: 10.1029/2004GL020974
    [29]
    Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research: Oceans, 116(C12): C12045. doi: 10.1029/2011JC007386
    [30]
    Pilo G S, Mata M M, Azevedo J L L. 2015. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems. Ocean Science, 11(4): 629–641. doi: 10.5194/os-11-629-2015
    [31]
    Qiu Fuwen, Fang Wendong, Zhu Dayong, et al. 2015. Characteristics and mechanism of the sea level rise in the South China Sea during 2005–2010. Journal of Tropical Oceanography (in Chinese), 34(5): 11–18
    [32]
    Qu Tangdong, Kim Y Y, Yaremchuk M, et al. 2004. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?. Journal of Climate, 17(18): 3644–3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
    [33]
    Salihoǧlu İ, Saydam C, Baştürk Ö, et al. 1990. Transport and distribution of nutrients and chlorophyll-a by mesoscale eddies in the Northeastern Mediterranean. Marine Chemistry, 29: 375–390. doi: 10.1016/0304-4203(90)90024-7
    [34]
    Shu Yeqiang, Chen Ju, Li Shuo, et al. 2019. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017. Science China Earth Sciences, 62(2): 451–458. doi: 10.1007/s11430-018-9239-0
    [35]
    Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241
    [36]
    Tuo Pengfei, Yu Jinyi, Hu Jianyu. 2019. The changing influences of ENSO and the pacific meridional mode on mesoscale eddies in the South China Sea. Journal of Climate, 32(3): 685–700. doi: 10.1175/JCLI-D-18-0187.1
    [37]
    Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
    [38]
    Wang Guihua, Su Jilan, Qi Yiquan. 2005. Advances in studying mesoscale eddies in South China Sea. Advance in Earth Sciences, 20(8): 882–886
    [39]
    Wang Dongxiao, Wang Qiang, Cai Shuqun, et al. 2019. Advances in research of the mid-deep South China Sea circulation. Science China Earth Sciences, 62(12): 1992–2004. doi: 10.1007/s11430-019-9546-3
    [40]
    Wang Chunzai, Wang Weiqiang, Wang Dongxiao, et al. 2006. Interannual variability of the South China Sea associated with El Niño. Journal of Geophysical Research Oceans, 111(C3): C03023
    [41]
    Wei Zexun, Zheng Quanan, Yang Yongzeng, et al. 2019. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements. Haiyang Xuebao (in Chinese), 41(10): 23–64
    [42]
    Wu C R, Chiang T L. 2007. Mesoscale eddies in the northern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1575–1588
    [43]
    Xie Lingling, Zheng Quanan. 2017. New insight into the South China Sea: Rossby normal modes. Acta Oceanologica Sinica, 36(7): 1–3. doi: 10.1007/s13131-017-1077-0
    [44]
    Xie Lingling, Zheng Quanan, Tian Jiwei, et al. 2016. Cruise observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea. Journal of Physical Oceanography, 46(10): 2897–2913. doi: 10.1175/JPO-D-16-0071.1
    [45]
    Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. 2018. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry. International Journal of Remote Sensing, 39(2): 399–417. doi: 10.1080/01431161.2017.1384591
    [46]
    Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3): C03012
    [47]
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [48]
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750. doi: 10.1002/2015JC011130
    [49]
    Zhang Yu, Guan Yuping. 2019. Striations in marginal seas and the mediterranean sea. Geophysical Research Letters, 46(5): 2726–2733. doi: 10.1029/2018GL081050
    [50]
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    [51]
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    [52]
    Zheng Zhewen, Ho C R, Kuo N J. 2007. Mechanism of weakening of west Luzon eddy during La Nina years. Geophysical Research Letters, 34(11): L11604. doi: 10.1029/2007GL030058
    [53]
    Zheng Quanan, Ho Chungru, Xie Lingling, et al. 2019. A case study of a Kuroshio main path cut-off event and impacts on the South China Sea in fall-winter 2013–2014. Acta Oceanologica Sinica, 38(4): 12–19. doi: 10.1007/s13131-019-1411-9
    [54]
    Zheng Quanan, Hu Jianyu, Zhu Benlu, et al. 2014. Standing wave modes observed in the South China Sea deep basin. Journal of Geophysical Research: Oceans, 119(7): 4185–4199. doi: 10.1002/2014JC009957
    [55]
    Zheng Quanan, Tai Changkuo, Hu Jianyu, et al. 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4): 365–376. doi: 10.1007/s10872-011-0035-2
    [56]
    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. 2017. Progress in research of mesoscale eddies in the South China Sea. Advances in Marine Science (in Chinese), 35(2): 131–158
    [57]
    Zu Tingting, Wang Dongxiao, Wang Qiang, et al. 2020. A revisit of the interannual variation of the South China Sea upper layer circulation in summer: Correlation between the eastward jet and northward branch. Climate Dynamics, 54(C7): 457–471
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (685) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return