Citation: | Yu Liang, Haibo Bi, Yunhe Wang, Zehua Zhang, Haijun Huang. Role of atmospheric factors in forcing Arctic sea ice variability[J]. Acta Oceanologica Sinica, 2020, 39(9): 60-72. doi: 10.1007/s13131-020-1629-6 |
[1] |
Årthun M, Eldevik T, Smedsrud L H, et al. 2012. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate, 25(13): 4736–4743. doi: 10.1175/JCLI-D-11-00466.1
|
[2] |
Bamber J L, Tedstone A J, King M D, et al. 2018. Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. Journal of Geophysical Research: Oceans, 123(3): 1827–1837. doi: 10.1002/2017JC013605
|
[3] |
Bi Haibo, Sun Ke, Zhou Xuan, et al. 2016. Arctic Sea ice area export through the fram strait estimated from satellite-based data: 1988–2012. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 3144–3157. doi: 10.1109/JSTARS.2016.2584539
|
[4] |
Boisvert L N, Petty A A, Stroeve J C. 2016. The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas. Monthly Weather Review, 144(11): 4279–4287. doi: 10.1175/MWR-D-16-0234.1
|
[5] |
Comiso J C. 2006. Abrupt decline in the Arctic winter sea ice cover. Geophysical Research Letters, 33(18): L18504
|
[6] |
Comiso J C. 2017. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3. [1979–2017]. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: https://doi.org/10.5067/7Q8HCCWS4I0R.[2018.04.03]
|
[7] |
Comiso J C, Hall D K. 2014. Climate trends in the Arctic as observed from space. Wiley Interdisciplinary Reviews: Climate Change, 5(3): 389–409. doi: 10.1002/wcc.277
|
[8] |
Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic Sea ice cover. Geophysical Research Letters, 35(1): L01703
|
[9] |
Crasemann B, Handorf D, Jaiser R, et al. 2017. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?. Polar Science, 14: 9–20. doi: 10.1016/j.polar.2017.09.002
|
[10] |
Curry J A, Schramm J L, Serreze M C, et al. 1995. Water vapor feedback over the Arctic Ocean. Journal of Geophysical Research: Atmospheres, 100(D7): 14223–14229. doi: 10.1029/95JD00824
|
[11] |
Deser C, Teng Haiyan. 2008. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophysical Research Letters, 35(2): L02504
|
[12] |
Deser C, Walsh J E, Timlin M S. 2000. Arctic sea ice variability in the context of recent atmospheric circulation trends. Journal of Climate, 13(3): 617–633. doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
|
[13] |
Ding Qinghua, Schweiger A J B, L’heureux M L, et al. 2016. Influence of the recent high-latitude atmospheric circulation change on summertime Arctic sea ice. Nature Climate Change, 7(4): 289–295
|
[14] |
Eisen O, Kottmeier C. 2000. On the importance of leads in sea ice to the energy balance and ice formation in the Weddell Sea. Journal of Geophysical Research: Oceans, 105(C6): 14045–14060. doi: 10.1029/2000JC900050
|
[15] |
Fan Tingting, Huang Fei, Su Jie. 2012. The seasonal March of dominate mode of the mid-high latitude atmosphere circulation in northern hemisphere and the associated Arctic sea ice. Periodical of Ocean University of China (in Chinese), 42(7): 19–25
|
[16] |
Fang Zhifang, Wallace J M. 1994. Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. Journal of Climate, 7(12): 1897–1914. doi: 10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2
|
[17] |
Germe A, Houssais M N, Herbaut C. 2011. Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere. Journal of Geophysical Research: Oceans, 116(C10): C10034. doi: 10.1029/2011JC006960
|
[18] |
Hall A. 2004. The role of surface albedo feedback in climate. Journal of Climate, 17(7): 1550–1568. doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
|
[19] |
Hegyi B M, Taylor P C. 2017. The regional influence of the Arctic Oscillation and Arctic Dipole on the wintertime Arctic surface radiation budget and sea ice growth. Geophysical Research Letters, 44(9): 4341–4350. doi: 10.1002/2017GL073281
|
[20] |
Hegyi B M, Taylor P C. 2018. The unprecedented 2016–2017 Arctic sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes. Geophysical Research Letters, 45(10): 5204–5212. doi: 10.1029/2017GL076717
|
[21] |
Herbaut C, Houssais M N, Close S, et al. 2015. Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers, 106: 97–115. doi: 10.1016/j.dsr.2015.10.005
|
[22] |
Hinzman L D, Bettez N D, Bolton W R, et al. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic Regions. Climatic Change, 72(3): 251–298. doi: 10.1007/s10584-005-5352-2
|
[23] |
Johannessen O M, Bengtsson L, Miles M W, et al. 2004. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A, 56(4): 328–341. doi: 10.3402/tellusa.v56i4.14418
|
[24] |
King M P, Hell M, Keenlyside N. 2016. Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the northern Hemisphere. Climate Dynamics, 46(3–4): 1185–1195
|
[25] |
Kwok R. 2009. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. Journal of Climate, 22(9): 2438–2457. doi: 10.1175/2008JCLI2819.1
|
[26] |
Lee S, Gong Tingting, Feldstein S B, et al. 2017. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophysical Research Letters, 44(20): 10654–10661. doi: 10.1002/2017GL075375
|
[27] |
Lei Ruibo, Gui Dawei, Hutchings J K, et al. 2019. Backward and forward drift trajectories of sea ice in the northwestern Arctic Ocean in response to changing atmospheric circulation. International Journal of Climatology, 39(11): 4372–4391. doi: 10.1002/joc.6080
|
[28] |
Letterly A, Key J, Liu Yinghui. 2016. The influence of winter cloud on summer sea ice in the Arctic, 1983–2013. Journal of Geophysical Research: Atmospheres, 121(5): 2178–2187. doi: 10.1002/2015JD024316
|
[29] |
Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(9): 269–283
|
[30] |
Liu Yinghui, Key J R. 2014. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environmental Research Letters, 9(4): 044002. doi: 10.1088/1748-9326/9/4/044002
|
[31] |
Liu Zheng, Schweiger A. 2017. Synoptic conditions, clouds, and sea ice melt onset in the Beaufort and Chukchi seasonal ice zone. Journal of Climate, 30(17): 6999–7016. doi: 10.1175/JCLI-D-16-0887.1
|
[32] |
Lynch A H, Serreze M C, Cassano E N, et al. 2016. Linkages between Arctic summer circulation regimes and regional sea ice anomalies. Journal of Geophysical Research: Atmospheres, 121(13): 7868–7880. doi: 10.1002/2016JD025164
|
[33] |
Markus T, Stroeve J C, Miller J. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10.1029/2009JC005436
|
[34] |
Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501. doi: 10.1029/2007GL032043
|
[35] |
Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502
|
[36] |
Nakanowatari T, Inoue J, Sato K, et al. 2015. Summertime atmosphere–ocean preconditionings for the Bering Sea ice retreat and the following severe winters in North America. Environmental Research Letters, 10(9): 094023. doi: 10.1088/1748-9326/10/9/094023
|
[37] |
Nghiem S V, Rigor I G, Perovich D K, et al. 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34(19): L19504. doi: 10.1029/2007GL031138
|
[38] |
Ogi M, Rigor I G, McPhee M G, et al. 2008. Summer retreat of Arctic sea ice: role of summer winds. Geophysical Research Letters, 35(24): L24701. doi: 10.1029/2008GL035672
|
[39] |
Ogi M, Rysgaard S, Barber D G. 2016. Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environmental Research Letters, 11(3): 034019. doi: 10.1088/1748-9326/11/3/034019
|
[40] |
Ogi M, Wallace J M. 2007. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophysical Research Letters, 34(12): L12705. doi: 10.1029/2007GL029897
|
[41] |
Ogi M, Yamazaki K, Wallace J M. 2010. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophysical Research Letters, 37(7): L07701
|
[42] |
Olonscheck D, Mauritsen T, Notz D. 2019. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nature Geoscience, 12(6): 430–434. doi: 10.1038/s41561-019-0363-1
|
[43] |
Overland J E, Wang M Y. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1): 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
|
[44] |
Park H S, Lee S, Son S W, et al. 2015. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. Journal of Climate, 28(13): 5030–5040. doi: 10.1175/JCLI-D-15-0074.1
|
[45] |
Partington K, Flynn T, Lamb D, et al. 2003. Late twentieth century northern Hemisphere sea-ice record from U. S. National Ice Center ice charts. Journal of Geophysical Research: Oceans, 108(C11): 3343
|
[46] |
Persson P O G. 2012. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Climate Dynamics, 39(6): 1349–1371. doi: 10.1007/s00382-011-1196-9
|
[47] |
Pleijter G. 2014. The Arctic Oscillation and its realtion to sea ice concentration [dissertation]. Delft: Delft University of Technology
|
[48] |
Rigor I G, Wallace J M, Colony R L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18): 2648–2663. doi: 10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
|
[49] |
Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337. doi: 10.1038/nature09051
|
[50] |
Sedlar J, Devasthale A. 2012. Clear-sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic. Journal of Geophysical Research: Atmospheres, 117(D19): D19111
|
[51] |
Serreze M C, Barrett A P, Stroeve J C, et al. 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3(1): 11–19. doi: 10.5194/tc-3-11-2009
|
[52] |
Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77(1–2): 85–96
|
[53] |
Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9): 1297–1300. doi: 10.1029/98GL00950
|
[54] |
Ukita J, Honda M, Nakamura H, et al. 2007. Northern Hemisphere sea ice variability: lag structure and its implications. Tellus A: Dynamic Meteorology and Oceanography, 59(2): 261–272. doi: 10.1111/j.1600-0870.2006.00223.x
|
[55] |
Wang Jia, Zhang Jinlun, Watanabe E, et al. 2009. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?. Geophysical Research Letters, 36(5): L05706
|
[56] |
Wang Yunhe, Yuan Xiaojun, Bi Haibo, et al. 2019. The contributions of winter cloud anomalies in 2011 to the summer sea-ice rebound in 2012 in the Antarctic. Journal of Geophysical Research: Atmospheres, 124(6): 3435–3447. doi: 10.1029/2018JD029435
|
[57] |
Wei Jianfen, Zhang Xiangdong, Wang Zhaomin. 2019. Reexamination of Fram Strait sea ice export and its role in recently accelerated Arctic sea ice retreat. Climate Dynamics, 53(3–4): 1823–1841
|
[58] |
Woods C, Caballero R, Svensson G. 2013. Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophysical Research Letters, 40(17): 4717–4721. doi: 10.1002/grl.50912
|
[59] |
Wu Bingyi, Wang Jia, Walsh J E. 2006. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19(2): 210–225. doi: 10.1175/JCLI3619.1
|
[60] |
Zhang Rong. 2015. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proceedings of the National Academy of Sciences of the United States of America, 112(15): 4570–4575. doi: 10.1073/pnas.1422296112
|