Citation: | Simin Hu, Tao Li, Sheng Liu, Hui Huang. Dietary separation between co-occurring copepods in a food-limited tropical coral reef of the Sanya Bay[J]. Acta Oceanologica Sinica, 2020, 39(4): 65-72. doi: 10.1007/s13131-020-1583-3 |
[1] |
Aranguren-Riaño N J, Guisande C, Shurin J B, et al. 2018. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity. Oecologia, 187(3): 719–730. doi: 10.1007/s00442-018-4130-6
|
[2] |
Arroyo N L, Aarnio K, Ólafsson E. 2007. Interactions between two closely related phytal harpacticoid copepods, asymmetric positive and negative effects. Journal of Experimental Marine Biology and Ecology, 341(2): 219–227. doi: 10.1016/j.jembe.2006.10.032
|
[3] |
Calliari D, Antezana T. 2001. Diel feeding rhythm of copepod size-fractions from Coliumo Bay, Central Chile. Scientia Marina, 65(4): 269–274. doi: 10.3989/scimar.2001.65n4269
|
[4] |
Carrasco N K, Perissinotto R. 2011. The comparative diet of the dominant zooplankton species in the St Lucia Estuary, South Africa. Journal of Plankton Research, 33(3): 479–490. doi: 10.1093/plankt/fbq126
|
[5] |
Dagg M. 1977. Some effects of patchy food environments on copepods. Limnology and Oceanography, 22(1): 99–107. doi: 10.4319/lo.1977.22.1.0099
|
[6] |
David V, Sautour B, Galois R, et al. 2006. The paradox high zooplankton biomass-low vegetal particulate organic matter in high turbidity zones: what way for energy transfer?. Journal of Experimental Marine Biology and Ecology, 333(2): 202–218. doi: 10.1016/j.jembe.2005.12.045
|
[7] |
Guisande C, Bartumeus F, Ventura M, et al. 2003. Role of food partitioning in structuring the zooplankton community in mountain lakes. Oecologia, 136(4): 627–634. doi: 10.1007/s00442-003-1306-4
|
[8] |
Guisande C, Maneiro I, Riveiro I, et al. 2002. Estimation of copepod trophic niche in the field using amino acids and marker pigments. Marine Ecology Progress Series, 239: 147–156. doi: 10.3354/meps239147
|
[9] |
Hu Simin, Guo Zhiling, Li Tao, et al. 2014. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol. PLoS One, 9(7): e103528. doi: 10.1371/journal.pone.0103528
|
[10] |
Hu Simin, Guo Zhiling, Li Tao, et al. 2015. Molecular analysis of in situ diets of coral reef copepods: evidence of terrestrial plant detritus as a food source in Sanya Bay, China. Journal of Plankton Research, 37(2): 363–371. doi: 10.1093/plankt/fbv014
|
[11] |
Huang Liangmin, Tan Yehui, Song Xingyu, et al. 2003. The status of the ecological environment and a proposed protection strategy in Sanya Bay, Hainan Island, China. Marine Pollution Bulletin, 47(1–6): 180–186. doi: 10.1016/S0025-326X(03)00070-5
|
[12] |
Hutchinson G E. 1961. The paradox of the plankton. The American Naturalist, 95(882): 137–145. doi: 10.1086/282171
|
[13] |
Ishii H. 1990. In situ feeding rhythms of herbivorous copepods, and the effect of starvation. Marine Biology, 105(1): 91–98. doi: 10.1007/BF01344274
|
[14] |
Ishii H, Tanaka F. 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiologia, 451(1–3): 311–320. doi: 10.1023/A:1011814525325
|
[15] |
Ke Zhixin, Huang Liangmin, Tan Yehui, et al. 2011. Plankton community structure and diversity in coral reefs area of Sanya Bay, Hainan Province, China. Biodiversity Science (in Chinese), 19(6): 696–701
|
[16] |
Kiørboe T, Jiang Houshuo, Colin S P. 2010. Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods. Proceedings of the Royal Society B: Biological Sciences, 277(1698): 3229–3237. doi: 10.1098/rspb.2010.0629
|
[17] |
Kimmel D G. 2011. Plankton consumer groups: copepods. In: Wolanski E, McLusky D S, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Elsevier, 95–126
|
[18] |
Kleppel G S. 1993. On the diets of calanoid copepods. Marine Ecology Progress Series, 99: 183–195. doi: 10.3354/meps099183
|
[19] |
Laakmann S, Kochzius M, Auel H. 2009. Ecological niches of Arctic deep-sea copepods: Vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition. Deep Sea Research Part I: Oceanographic Research Papers, 56(5): 741–756. doi: 10.1016/j.dsr.2008.12.017
|
[20] |
Lee D B, Song H Y, Park C, et al. 2012. Copepod feeding in a coastal area of active tidal mixing: diel and monthly variations of grazing impacts on phytoplankton biomass. Marine Ecology, 33(1): 88–105. doi: 10.1111/j.1439-0485.2011.00453.x
|
[21] |
Leising A W, Pierson J J, Cary S, et al. 2005. Copepod foraging and predation risk within the surface layer during night-time feeding forays. Journal of Plankton Research, 27(10): 987–1001. doi: 10.1093/plankt/fbi084
|
[22] |
Levins R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press, 65–70
|
[23] |
Lewis J B, Bray R D. 1983. Community structure of ophiuroids (Echinodermata) from three different habitats on a coral reef in Barbados, West Indies. Marine Biology, 73(2): 171–176. doi: 10.1007/BF00406885
|
[24] |
Lombard F, Koski M, Kiørboe T. 2013. Copepods use chemical trails to find sinking marine snow aggregates. Limnology and Oceanography, 58(1): 185–192. doi: 10.4319/lo.2013.58.1.0185
|
[25] |
Mackas D L, Sefton H, Miller C B, et al. 1993. Vertical habitat partitioning by large calanoid copepods in the oceanic subarctic Pacific during Spring. Progress in Oceanography, 32(1–4): 259–294. doi: 10.1016/0079-6611(93)90017-8
|
[26] |
Nejstgaard J C, Frischer M E, Raule C L, et al. 2003. Molecular detection of algal prey in copepod guts and fecal pellets. Limnology and Oceanography: Methods, 1(1): 29–38. doi: 10.4319/lom.2003.1.29
|
[27] |
Pagano M, Kouassi E, Saint-Jean L, et al. 2003. Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrié, Côte d’Ivoire). Estuarine, Coastal and Shelf Science, 56(3–4): 433–445. doi: 10.1016/S0272-7714(02)00193-2
|
[28] |
Pianka E R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4: 53–74. doi: 10.1146/annurev.es.04.110173.000413
|
[29] |
Pierson J J, Frost B W, Leising A W. 2013. Foray foraging behavior: seasonally variable, food-driven migratory behavior in two calanoid copepod species. Marine Ecology Progress Series, 475: 49–64. doi: 10.3354/meps10116
|
[30] |
Saito H, Taguchi S. 1996. Diel feeding behavior of neritic copepods during spring and fall blooms in Akkeshi Bay, eastern coast of Hokkaido, Japan. Marine Biology, 125(1): 97–107. doi: 10.1007/BF00350764
|
[31] |
Sato K I, Yamaguchi A, Ueno H, et al. 2011. Vertical segregation within four grazing copepods in the Oyashio region during early spring. Journal of Plankton Research, 33(8): 1230–1238. doi: 10.1093/plankt/fbr018
|
[32] |
Schnetzer A, Steinberg D. 2002. Natural diets of vertically migrating zooplankton in the Sargasso Sea. Marine Biology, 141(2): 403. doi: 10.1007/s00227-002-0917-3
|
[33] |
Teuber L, Schukat A, Hagen W, et al. 2014. Trophic interactions and life strategies of epi- to bathypelagic calanoid copepods in the tropical Atlantic Ocean. Journal of Plankton Research, 36(4): 1109–1123. doi: 10.1093/plankt/fbu030
|
[34] |
Wong C K, Chen Qingchao, Huang Liangmin. 1991. Fluorescence analysis of the gut contents of calanoid copepods in the Zhujiang River Estuary. Marine Sciences, (3): 60–64
|
[35] |
Yin Jianqiang, Zhang Guxian, Huang Liangmin, et al. 2004. Diel vertical migration of zooplankton in Sanya Bay, Hainan Province, China. Journal of Tropical Oceanography (in Chinese), 23(5): 25–33
|
[36] |
Yokoyama L Q, Lembo Duarte L F, Zacagnini Amaral A C. 2008. Reproductive cycle of Ophionereis reticulata (Ophiuroidea, Echinodermata) on the southeast coast of Brazil. Invertebrate Reproduction & Development, 51(2): 111–118. doi: 10.1080/07924259.2008.9652261
|
[37] |
Zhao Meixia, Yu Kefu, Shi Qi, et al. 2013. Source, distribution and influencing factors of sediments on Luhuitou fringing reef, Northern South China Sea. Chinese Science Bulletin (in Chinese), 58(17): 1583–1589
|
1. | Renata Lopes Trindade, Ariadne do Nascimento Moura, Adriane Pereira Wandness, et al. We are where we eat! The food selectivity of Copepoda Harpacticoida species on mangrove benthic diatoms and cyanobacteria influences their spatial distribution at a microscale level. Journal of Experimental Marine Biology and Ecology, 2025, 585: 152094. doi:10.1016/j.jembe.2025.152094 | |
2. | Charlotte A. Eckmann, Jessica S. Eberle, Fabian Wittmers, et al. Eukaryotic algal community composition in tropical environments from solar salterns to the open sea. Frontiers in Marine Science, 2023, 10 doi:10.3389/fmars.2023.1131351 | |
3. | Diwen Liang, Hailin Luo, Chunrong Huang, et al. High-throughput sequencing reveals omnivorous and preferential diets of the rotifer Polyarthra in situ. Frontiers in Microbiology, 2022, 13 doi:10.3389/fmicb.2022.1048619 | |
4. | Heba S. El-Sayed, Amal Z. Ghonim, Gihan M. El-Khodary, et al. Application of enriched Cyclops abyssorum divergens with mixed algal diet compared to Artemia franciscana for improving larval growth and body composition of Dicentrarchus labrax. Aquaculture Reports, 2021, 20: 100715. doi:10.1016/j.aqrep.2021.100715 |