Citation: | Jiechen Zhao, Qi Shu, Chunhua Li, Xingren Wu, Zhenya Song, Fangli Qiao. The role of bias correction on subseasonal prediction of Arctic sea ice during summer 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 50-59. doi: 10.1007/s13131-020-1578-0 |
[1] |
Blanchard-Wrigglesworth E, Barthelemy A, Chevallier M, et al. 2017. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales. Climate Dynamics, 49(4): 1399–1410. doi: 10.1007/s00382-016-3388-9
|
[2] |
Blanchard-Wrigglesworth E, Cullather R I, Wang Wanqiu, et al. 2015. Model forecast skill and sensitivity to initial conditions in the seasonal sea ice outlook. Geophysical Research Letters, 42(19): 8042–8048. doi: 10.1002/2015GL065860
|
[3] |
Chen Hui, Yin Xunqiang, Bao Ying, et al. 2016. Ocean satellite data assimilation experiments in FIO-ESM using ensemble adjustment Kalman filter. Science China Earth Sciences, 59(3): 484–494. doi: 10.1007/s11430-015-5187-2
|
[4] |
Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letter, 35(1): L01703
|
[5] |
Director H M, Raftery A E, Bitz C M. 2017. Improved sea ice forecasting through spatiotemporal bias correction. Journal of Climate, 30(23): 9493–9510. doi: 10.1175/JCLI-D-17-0185.1
|
[6] |
Ek M B, Mitchell K E, Lin Y, et al. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmosphere, 108(D22): 8851
|
[7] |
Goessling H F, Jung T. 2018. A probabilistic verification score for contours: methodology and application to Arctic ice-edge forecasts. Quarterly Journal of the Royal Meteorological Society, 144(712): 735–743. doi: 10.1002/qj.3242
|
[8] |
Goessling H F, Tietsche S, Day J J, et al. 2016. Predictability of the Arctic sea ice edge. Geophysical Research Letters, 43(4): 1642–1650. doi: 10.1002/2015GL067232
|
[9] |
Griffies S M, Harrison M J, Pacanowski R C, et al. 2004. A technical guide to MOM4. GFDL Ocean Group Technical Report No.5. Princeton, US: Geophysical Fluid Dynamics Laboratory, NOAA
|
[10] |
Hawkins E, Osborne T M, Ho C K, et al. 2013. Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agricultural and Forest Meteorology, 170: 19–31. doi: 10.1016/j.agrformet.2012.04.007
|
[11] |
Hibler III W D. 1979. A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4): 815–846. doi: 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
|
[12] |
Hunke E C, Dukowicz J K. 1997. An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9): 1849–1867. doi: 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
|
[13] |
Huntingford C, Lambert H F, Gash J H C, et al. 2005. Aspects of climate change prediction relevant to crop productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463): 1999–2009. doi: 10.1098/rstb.2005.1748
|
[14] |
Ines A V M, Hansen J W. 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 138(1–4): 44–53
|
[15] |
Kwok R, Cunningham G F, Wensnahan M, et al. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. Journal of Geophysical Research: Oceans, 114(C7): C07005
|
[16] |
Liu Jiping, Chen Zhiqiang, Hu Yongyun, et al. 2019. Towards reliable Arctic sea ice prediction using multivariate data assimilation. Science Bulletin, 64(1): 63–72. doi: 10.1016/j.scib.2018.11.018
|
[17] |
Markus T, Stroeve J C, Miller J. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10.1029/2009JC005436
|
[18] |
Meehl G A, Goddard L, Boer G, et al. 2014. Decadal climate prediction: an update from the trenches. Bulletin of the American Meteorological Society, 95(2): 243–267. doi: 10.1175/BAMS-D-12-00241.1
|
[19] |
Nghiem S V, Rigor I G, Perovich D K, et al. 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34(19): L19504. doi: 10.1029/2007GL031138
|
[20] |
Qiao Fangli, Song Zhenya, Bao Ying, et al. 2013. Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9): 4514–4524. doi: 10.1002/jgrc.20327
|
[21] |
Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): L11303
|
[22] |
Saha S, Moorthi S, Wu Xingren, et al. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015–1057. doi: 10.1175/2010BAMS3001.1
|
[23] |
Saha S, Moorthi S, Wu Xingren, et al. 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6): 2185–2208. doi: 10.1175/JCLI-D-12-00823.1
|
[24] |
Shu Qi, Qiao Fangli, Bao Ying, et al. 2015a. Assessment of Arctic sea ice simulation by FIO-ESM based on data assimilation experiment. Haiyang Xuebao (in Chinese), 37(11): 33–40
|
[25] |
Shu Qi, Song Zhenya, Qiao Fangli. 2015b. Assessment of sea ice simulations in the CMIP5 models. The Cryosphere, 9(1): 399–409. doi: 10.5194/tc-9-399-2015
|
[26] |
Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03
|
[27] |
Stroeve J, Hamilton L C, Bitz C M, et al. 2014. Predicting September sea ice: ensemble skill of the SEARCH sea ice outlook 2008–2013. Geophysical Research Letters, 41(7): 2411–2418. doi: 10.1002/2014GL059388
|
[28] |
Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3): 1005–1027
|
[29] |
Vitart F, Ardilouze A, Bonet A, et al. 2017. The Subseasonal to Seasonal (S2S) prediction project database. Bulletin of the American Meteorological Society, 98: 163–173. doi: 10.1175/BAMS-D-16-0017.1
|
[30] |
Wayand N E, Bitz C M, Blanchard-Wrigglesworth E. 2019. A year-round subseasonal-to-seasonal sea ice prediction portal. Geophysical Research Letters, 46(6): 3298–3307. doi: 10.1029/2018GL081565
|
[31] |
Winton M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17(4): 525–531. doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2
|
[32] |
Zampieri L, Goessling H F, Jung T. 2018. Bright prospects for arctic sea ice prediction on subseasonal time scales. Geophysical Research Letters, 45(18): 9731–9738. doi: 10.1029/2018GL079394
|
[33] |
Zampieri L, Goessling H F, Jung T. 2019. Predictability of Antarctic sea ice edge on subseasonal time scales. Geophysical Research Letters, 46(16): 9719–9727. doi: 10.1029/2019GL084096
|
[34] |
Zhao Jiechen, Zhou Xiang, Sun Xiaoyu, et al. 2017. The inter comparison and assessment of satellite sea-ice concentration datasets from the arctic. Journal of Remote Sensing (in Chinese), 21(3): 351–364
|