Citation: | Mingzheng Wen, Yonggang Jia, Zhenhao Wang, Shaotong Zhang, Hongxian Shan. Wave flume experiments on dynamics of the bottom boundary layer in silty seabed[J]. Acta Oceanologica Sinica, 2020, 39(5): 96-104. doi: 10.1007/s13131-020-1571-7 |
[1] |
Bowden K F. 1978. Physical problems of the benthic boundary layer. Geophysical Surveys, 3(3): 255–296. doi: 10.1007/BF01449556
|
[2] |
Bruens A. 2003. Entrainment mud suspensions [dissertation}. Delft, The Netherlands: Delft University of Technology.
|
[3] |
Chang H K, Shih C J, Liu T J, et al. 2012. Curtain coating of dilute suspensions. Polymer Engineering and Science, 52(1): 1–11. doi: 10.1002/pen.22031
|
[4] |
Guo Lei, Wen Mingzheng, Shan Hongxian, et al. 2016. Study on re-suspension process of seabed sediment induced by wave. Marine Geology & Quaternary Geology (in Chinese), 36(5): 181–188
|
[5] |
Hir P L, Bassoullet P, Jestin H. 2000. Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary. Proceedings in Marine Science, 3: 229–247. doi: 10.1016/S1568-2692(00)80124-2
|
[6] |
Ingliss C C, Allen F H. 1957. The regimen of the Thamcs as affected by currents, salinities and river Row. Proceedings of the Institute of Civil Engineers, 7: 827–878. doi: 10.1680/iicep.1957.2705
|
[7] |
Jeng D S. 2001. Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review. Ocean Engineering, 28(5): 537–570. doi: 10.1016/S0029-8018(00)00013-5
|
[8] |
Jeng D S. 2013. Porous Models for Wave-seabed Interactions. Berlin: Springer, 95–120
|
[9] |
Jia Yonggang, Zhang Liping, Zhang Jiewen, et al. 2014. Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta. Ocean Engineering, 89: 146–156. doi: 10.1016/j.oceaneng.2014.08.004
|
[10] |
Kantha L H, Clayson C A, Moum J. 2000. Small scale processes in geophysical fluid flows. Physics Today, 54(10): 74–75
|
[11] |
Kineke G C, Sternberg R W, Trowbridge J H, et al. 1996. Fluid-mud processes on the Amazon continental shelf. Continental Shelf Research, 16(5–6): 667–696. doi: 10.1016/0278-4343(95)00050-X
|
[12] |
Krone R B. 1962. Flume studies of the transport of sediment in estuarial shoaling process. Berkeley: Hydraulic Engineering Laboratory and Sanitary Engineering Laboratory, University of California, 110.
|
[13] |
Liu Xiaolei, Jia Yonggang, Zheng Jiewen, et al. 2013. Experimental evidence of wave-induced inhomogeneity in the strength of silty seabed sediments: Yellow River Delta, China. Ocean Engineering, 59: 120–128. doi: 10.1016/j.oceaneng.2012.12.003
|
[14] |
Liu Xiaolei, Jia Yonggang, Zheng Jiewen, et al. 2016. An experimental investigation of wave-induced sediment responses in a natural silty seabed: New insights into seabed stratification. Sedimentology, 64(2): 508–529. doi: 10.1111/sed.12312
|
[15] |
Lueck R. 2001. Turbulence in the benthic boundary layer. In: Steele J H, ed. Encyclopedia of Ocean Sciences. London: Elsevier Science Ltd, 265(1322): 3057–3063
|
[16] |
McKee B A, Aller R C, Allison M A, et al. 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Continental Shelf Research, 24(7–8): 899–926. doi: 10.1016/j.csr.2004.02.009
|
[17] |
Miyamoto J, Sassa S, Sekiguchi H. 2004. Progressive solidification of a liquefied sand layer during continued wave loading. Géotechnique, 54(10): 617–629. doi: 10.1680/geot.2004.54.10.617
|
[18] |
Mörz T, Karlik E A, Kreiter S, et al. 2007. An experimental setup for fluid venting in unconsolidated sediments: New insights to fluid mechanics and structures. Sedimentary Geology, 196(1–4): 251–267. doi: 10.1016/j.sedgeo.2006.07.006
|
[19] |
Prior D B, Yang Z S, Bornhold B D, et al. 1986. The subaqueous delta of the modern huanghe (yellow river). Geo-Marine Letters, 6(2): 67–75. doi: 10.1007/BF02281642
|
[20] |
Ross M A. 1988. Vertical structure of estuarine fine sediment suspensions [dissertation}. Gainesville, FL: University of Florida, 188
|
[21] |
Sumer B M, Hatipoglu F, Fredsøe J. 2004. The cycle of soil behaviour during wave liquefaction. Book of Abstracts, Procedings of 29th International Conference on Coastal Engineering, ICCE. Lisbon: ICCE 2004 Organizing Committee, 171–171
|
[22] |
Sumer B M, Hatipoglu F, Fredsøe J, et al. 2006. The sequence of sediment behaviour during wave-induced liquefaction. Sedimentology, 53(3): 611–629. doi: 10.1111/j.1365-3091.2006.00763.x
|
[23] |
Sun Yongfu, Dong Lifeng, Song Yupeng. 2008. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River. Rock and Soil Mechanics (in Chinese), 29(6): 1494–1499
|
[24] |
Van Den Berg J H, Gelder V. 1993. Prediction of suspended bed material transport in flows over silt and very fine sand. Water Resources Research, 29(5): 1393–1404. doi: 10.1029/92WR02654
|
[25] |
Wan Yuanyang, Roelvink D, Li Wehua, et al. 2014. Observation and modeling of the storm-induced fluid mud dynamics in a muddy-estuarine navigational channel. Geomorphology, 217: 23–36. doi: 10.1016/j.geomorph.2014.03.050
|
[26] |
Wang Hu, Liu Hongjun, Zhang Minsheng. 2014. Pore pressure response of seabed in standing waves and its mechanism. Coastal Engineering, 91: 213–219. doi: 10.1016/j.coastaleng.2014.06.005
|
[27] |
Wei Helong, Li Guangxue, Li Shaoquan. 1995. Prediction of sediment transport rate in the lower reaches of the yellow river. Marine Geology & Quaternary Geology (in Chinese), 15(4): 69–79
|
[28] |
Wells J T. 1983. Dynamics of coastal fluid muds in low-, moderate-, high-tide-range environments. Canadian Journal of Fisheries and Aquatic Science, 40(S1): s130–s142. doi: 10.1139/f83-276
|
[29] |
Winterwerp J C, Bruens A W, Gratiot N, et al. 2002. Dynamics of concentrated benthic suspension layers. Proceedings in Marine Science, 5: 41–55. doi: 10.1016/S1568-2692(02)80007-9
|
[30] |
Wright L D, Yang Z S, Bornhold B D, et al. 1986. Hyperpycnal plumes and plume fronts over the huanghe (Yellow River) Delta front. Geo-Marine Letters, 6(2): 97–105. doi: 10.1007/BF02281645
|
[31] |
Xu Guohui, Liu Zhiqin, Sun Yongfu, et al. 2016. Experimental characterization of storm liquefaction deposits sequences. Marine Geology, 382: 191–199. doi: 10.1016/j.margeo.2016.10.015
|
[32] |
Xu Guohui, Wei Congcong, Sun Yongfu, et al. 2008. The engineering characteristics of shallow disturbed strata and analysis of their formation on the subaqueous Yellow River Delta. Marine Geology & Quaternary Geology (in Chinese), 28(6): 19–25
|
[33] |
Zhang Shaotong, Jia Yonggang, Wen Mingzheng, et al. 2017. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-‘sub-bottom sediment pump action’. Journal of Ocean University of China, 16(1): 15–24. doi: 10.1007/s11802-017-3042-0
|
[34] |
Zhang Shaotong, Jia Yonggang, Zhang Yaqi, et al. 2018a. Influence of seepage flows on the erodibility of fluidized silty sediments: parameterization and mechanisms. Journal of Geophysical Research: Oceans, 123(5): 3307–3321. doi: 10.1002/2018JC013805
|
[35] |
Zhang Shaotong, Jia Yonggang, Wang Zhenhao, et al. 2018b. Wave flume experiments on the contribution of seabed fluidization to sediment resuspension. Acta Oceanologica Sinica, 37(3): 1–8. doi: 10.1007/s13131-018-1195-3
|
1. | Zichen Zhu, Xing Du, Bingchen Liang, et al. Simulating Liquefaction-induced Resuspension Flux in a Sediment Transport Model. Water Research, 2024. doi:10.1016/j.watres.2024.122057 | |
2. | Zhihan Fan, Xianming Zhu, Haibo Xu, et al. A new method for long-term in situ monitoring of seabed interface evolution: A self-potential probe. Ocean Engineering, 2023, 280: 114917. doi:10.1016/j.oceaneng.2023.114917 | |
3. | Lihua Wang, Jinfeng Zhang, Dong-Sheng Jeng, et al. Experimental study on the dynamic response of a silty seabed under waves. Ocean Engineering, 2023, 269: 113554. doi:10.1016/j.oceaneng.2022.113554 | |
4. | Zhiyuan Chen, Guohui Xu, Yupeng Ren, et al. Fluid characteristics of wave-induced liquefied silty seabed and the resulting wave attenuation. Ocean Engineering, 2023, 279: 114581. doi:10.1016/j.oceaneng.2023.114581 | |
5. | Ahmad Shakeel, Claire Chassagne, Jasper Bornholdt, et al. From fundamentals to implementation of yield stress for nautical bottom: Case study of the Port of Hamburg. Ocean Engineering, 2022, 266: 112772. doi:10.1016/j.oceaneng.2022.112772 | |
6. | Jiangfeng Dong, Jishang Xu, Guangxue Li, et al. Experimental Study on Silty Seabed Liquefaction and Its Impact on Sediment Resuspension by Random Waves. Journal of Marine Science and Engineering, 2022, 10(3): 437. doi:10.3390/jmse10030437 | |
7. | Jishang Xu, Jiangfeng Dong, Shaotong Zhang, et al. Pore-water pressure response of a silty seabed to random wave action: Importance of low-frequency waves. Coastal Engineering, 2022, 178: 104214. doi:10.1016/j.coastaleng.2022.104214 | |
8. | Mohsen Soltanpour, Kourosh Hejazi, Mohammad Hadi Jabbari, et al. The mechanism of fluidization in mud beds under progressive waves. Coastal Engineering Journal, 2021, 63(1): 32. doi:10.1080/21664250.2020.1847401 | |
9. | Shaotong Zhang, Peter Nielsen, Pierre Perrochet, et al. Derivation of settling velocity, eddy diffusivity and pick-up rate from field-measured suspended sediment concentration profiles in the horizontally uniform but vertically unsteady scenario. Applied Ocean Research, 2021, 107: 102485. doi:10.1016/j.apor.2020.102485 |