Citation: | Qiuxing Liu, Jinrong Jiang, Fujiang Yu, Changkuan Zhang, Jianxi Dong, Xiaojiang Song, Yuzhu Wang. Typhoon storm surge ensemble forecast based on GPU technique[J]. Acta Oceanologica Sinica, 2020, 39(5): 77-86. doi: 10.1007/s13131-020-1570-8 |
[1] |
Amouzgar R, Liang Qiuhua, Clarke P J. 2016. Computationally efficient tsunami modeling on Graphics Processing Units (GPUs). International Journal of Offshore and Polar Engineering, 26(2): 154–160. doi: 10.17736/ijope.2016.ak10
|
[2] |
Brodtkorb A R, Trond R H, Martin L S. 2013. Graphics processing unit (GPU) programming strategies and trends in GPU computing. Journal of Parallel and Distributed Computing, 73(1): 4–13. doi: 10.1016/j.jpdc.2012.04.003
|
[3] |
Bard C M, Dorelli J C. 2014. A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics. Journal of Computational Physics, 259: 444–460. doi: 10.1016/j.jcp.2013.12.006
|
[4] |
Chauhan M S, Hammoshi M, Al-Bahri B A S. 2016. Accelerating high arithmetic intensity storm surge model using CUDA. Recent Trends in Parallel Computing, 3(2): 9–21
|
[5] |
Ding Xuelin, Chen Yongping, Pan Yi, et al. 2016. Fast ensemble forecast of storm surge along the coast of China. Journal of Coastal Research, 2: 1077–1081
|
[6] |
Dong Jianxi, Fu Xiang, Wu Wei, et al. 2008. Operational Forecast and test of the high nesolution numerical storm surge forecast model for China sea. Marine Forecasts (in Chinese), 25(2): 11–17
|
[7] |
Flowerdew J, Horsburgh K, Mylne K. 2009. Ensemble forecasting of storm surges. Marine Geodesy, 32(2): 91–99. doi: 10.1080/01490410902869151
|
[8] |
Higaki M, Hayashibara H, Nozaki F. 2009. Outline of the Storm Surge Prediction Model at the Japan Meteorological Agency. Tokyo: Typhoon Center
|
[9] |
Liang Qiuhua, Xia Xilin, Hou Jingming. 2016. Catchment-scale high-resolution flash flood simulation using the GPU-based technology. Procedia Engineering, 154: 975–981. doi: 10.1016/j.proeng.2016.07.585
|
[10] |
Mel R, Lionello P. 2014b. Storm surge ensemble prediction for the city of Venice. Weather and Forecasting, 29(4): 1044–1057. doi: 10.1175/WAF-D-13-00117.1
|
[11] |
Salighehdar A, Ye Ziwen, Liu Mingzhe, et al. 2017. Ensemble-based storm surge forecasting models. Weather and Forecasting, 32(5): 1921–1936. doi: 10.1175/WAF-D-17-0017.1
|
[12] |
Sha Tianyang, Yang Guojie, Cheng Zhengquan. 2015. A brief account of the forecast products based on the forecast texts of ensemble prediction from ECMWF. Guangdong Meteorology (in Chinese), 37(1): 4–9
|
[13] |
Suh S W, Lee H Y, Kim H J, et al. 2015. An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN. Ocean Dynamics, 65(5): 617–646. doi: 10.1007/s10236-015-0820-3
|
[14] |
Wang Xinian. 2001. Storm surge forecast technique. Marine Forecasts (in Chinese), 19(2): 64–70
|
[15] |
Wang Xinian, Yin Qingjiang, Zhang Baoming. 1991. Research and applications of a forecasting model of typhoon surges in China Seas. Advances in Water Science (in Chinese), 2(1): 1–10
|
[16] |
Wang Peitao, Yu Fujiang, Liu Qiuxing, et al. 2010. Study of refined ensemble numerical typhoon surge forecast technology for Fujian coast. Marine Forecasts (in Chinese), 27(5): 7–15
|
[17] |
Yu Fujiang, Zhang Zhanhai. 2002. Implementation and application of a nested numerical storm surge forecast model in the East China Sea. Acta Oceanologica Sinica, 21(1): 19–31
|