Peilong Yu, Lifeng Zhang, Mingyang Liu, Quanjia Zhong, Yongchui Zhang, Xin Li. A comparison of the strength and position variability of the Kuroshio Extension SST front[J]. Acta Oceanologica Sinica, 2020, 39(5): 26-34. doi: 10.1007/s13131-020-1567-3
Citation: Peilong Yu, Lifeng Zhang, Mingyang Liu, Quanjia Zhong, Yongchui Zhang, Xin Li. A comparison of the strength and position variability of the Kuroshio Extension SST front[J]. Acta Oceanologica Sinica, 2020, 39(5): 26-34. doi: 10.1007/s13131-020-1567-3

A comparison of the strength and position variability of the Kuroshio Extension SST front

doi: 10.1007/s13131-020-1567-3
Funds:  The National Natural Science Foundation of China under contract Nos 41975066, 41605051 and 41406003; the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research under contract No. SKLEC-KF201707; the High-Tech Innovation Think-Tank Youth Project under contract No. DXB-ZKQN-2016-019; Jiangsu Provincial Natural Science Foundation under contract No. BK20130064.
More Information
  • Corresponding author: E-mail: zhanglif_qxxy@sina.cn
  • Received Date: 2019-02-11
  • Accepted Date: 2019-05-13
  • Available Online: 2020-12-28
  • Publish Date: 2020-05-25
  • This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front (KEF) using high-resolution satellite-derived sea surface temperature (SST) and sea surface height (SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger (weaker) KEF during the cold (warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF (142°–144°E) has the greatest variability in strength, while the eastern part of the KEF (149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive (negative) North Pacific Oscillation (NPO)-like atmospheric forcing generates positive (negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened (weakened) and northward (southward)-moving KEF.
  • [1]
    Bretherton C S, Widmann M, Dymnikov V P, et al. 1999. The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12(7): 1990–2009. doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
    [2]
    Ceballos L I, Di Lorenzo E, Hoyos C D, et al. 2009. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. Journal of Climate, 22(19): 5163–5174. doi: 10.1175/2009JCLI2848.1
    [3]
    Chen Shuiming. 2008. The Kuroshio Extension front from satellite sea surface temperature measurements. Journal of Oceanography, 64(6): 891–897. doi: 10.1007/s10872-008-0073-6
    [4]
    Ding Ruiqiang, Li Jianping, Tseng Y H. 2015. The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dynamics, 44(7–8): 2017–2034. doi: 10.1007/s00382-014-2303-5
    [5]
    Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysics Research: Oceans, 105(C8): 19477–19498. doi: 10.1029/2000JC900063
    [6]
    Esbensen S K. 1984. A comparison of intermonthly and interannual teleconnections in the 700 mb geopotential height field during the northern hemisphere winter. Monthly Weather Review, 112(10): 2016–2032. doi: 10.1175/1520-0493(1984)112<2016:ACOIAI>2.0.CO;2
    [7]
    Frankignoul C, Sennéchael N, Kwon Y O, et al. 2011. Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. Journal of Climate, 24(3): 762–777. doi: 10.1175/2010JCLI3731.1
    [8]
    Fu L L, Qiu Bo. 2002. Low-frequency variability of the North Pacific Ocean: the roles of boundary-and wind-driven baroclinic Rossby waves. Journal of Geophysics Research: Oceans, 107(C12): 13-1–13-10. doi: 10.1029/2001JC001131
    [9]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP-NCAR 40-Year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [10]
    Kawai Y, Miyama T, Iizuka S, et al. 2015. Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. Journal of Oceanography, 71(5): 511–526. doi: 10.1007/s10872-014-0266-0
    [11]
    Kelly K A, Small R J, Samelson R M, et al. 2010. Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. Journal of Climate, 23(21): 5644–5667. doi: 10.1175/2010JCLI3346.1
    [12]
    Kida S, Mitsudera H, Aoki S, et al. 2015. Oceanic fronts and jets around Japan: a review. Journal of Oceanography, 71(5): 469–497. doi: 10.1007/s10872-015-0283-7
    [13]
    Kwon Y O, Deser C. 2007. North Pacific decadal variability in the Community Climate System Model version 2. Journal of Climate, 20(11): 2416–2433. doi: 10.1175/JCLI4103.1
    [14]
    Linkin M E, Nigam S. 2008. The North Pacific Oscillation-west Pacific teleconnection pattern: mature-phase structure and winter impacts. Journal of Climate, 21(9): 1979–1997. doi: 10.1175/2007JCLI2048.1
    [15]
    Masunaga R, Nakamura H, Miyasaka T, et al. 2015. Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. Journal of Climate, 28(5): 1764–1787. doi: 10.1175/JCLI-D-14-00314.1
    [16]
    Masunaga R, Nakamura H, Miyasaka T, et al. 2016. Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. Journal of Climate, 29(9): 3273–3296. doi: 10.1175/JCLI-D-15-0545.1
    [17]
    Mizuno K, White W B. 1983. Annual and interannual variability in the Kuroshio current system. Journal of Physical Oceanography, 13(10): 1847–1867. doi: 10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2
    [18]
    Nonaka M, Nakamura H, Tanimoto Y, et al. 2006. Decadal variability in the Kuroshio-Oyashio Extension simulated in an eddy-resolving OGCM. Journal of Climate, 19(10): 1970–1989. doi: 10.1175/JCLI3793.1
    [19]
    O’Reilly C H, Czaja A. 2015. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quarterly Journal of the Royal Meteorological Society, 141(686): 52–66. doi: 10.1002/qj.2334
    [20]
    Qiu Bo. 2003. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. Journal of Physical Oceanography, 33(12): 2465–2482. doi: 10.1175/2459.1
    [21]
    Qiu Bo, Chen Shuiming. 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090–2103. doi: 10.1175/JPO2807.1
    [22]
    Qiu Bo, Chen Shuiming. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(13–14): 1098–1110. doi: 10.1016/j.dsr2.2008.11.036
    [23]
    Qiu Bo, Chen Shuiming, Schneider N, et al. 2014. A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. Journal of Climate, 27(4): 1751–1764. doi: 10.1175/JCLI-D-13-00318.1
    [24]
    Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496. doi: 10.1175/2007JCLI1824.1
    [25]
    Sasaki Y N, Minobe S, Schneider N. 2013. Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-jet theory. Journal of Physical Oceanography, 43(2): 442–456. doi: 10.1175/JPO-D-12-096.1
    [26]
    Seo Y, Sugimoto S, Hanawa K. 2014. Long-term variations of the Kuroshio Extension path in winter: meridional movement and path state change. Journal of Climate, 27(15): 5929–5940. doi: 10.1175/JCLI-D-13-00641.1
    [27]
    Sugimoto S, Hanawa K. 2009. Decadal and interdecadal variations of the Aleutian low activity and their relation to upper oceanic variations over the North Pacific. Journal of the Meteorological Society of Japan, 87(4): 601–614. doi: 10.2151/jmsj.87.601
    [28]
    Sugimoto S, Hanawa K. 2011. Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio confluence region: Influences of warm eddies detached from the Kuroshio Extension. Journal of Climate, 24(24): 6551–6561. doi: 10.1175/2011JCLI4023.1
    [29]
    Sugimoto S, Kobayashi N, Hanawa K. 2014. Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: The influence of Kuroshio Extension path state. Journal of Physical Oceanography, 44(10): 2753–2762. doi: 10.1175/JPO-D-13-0265.1
    [30]
    Taguchi B, Xie Shangping, Schneider N, et al. 2007. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast. Journal of Climate, 20(11): 2357–2377. doi: 10.1175/JCLI4142.1
    [31]
    Tokinaga H, Tanimoto Y, Xie Shangping, et al. 2009. Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. Journal of Climate, 22(16): 4241–4260. doi: 10.1175/2009JCLI2763.1
    [32]
    Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4): 784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [33]
    Wang Yanxin, Yang Xiaoyi, Hu Jianyu. 2016. Position variability of the Kuroshio Extension sea surface temperature front. Acta Oceanologica Sinica, 35(7): 30–35. doi: 10.1007/s13131-016-0909-7
    [34]
    Yasuda I. 2003. Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59(4): 389–402. doi: 10.1023/A:1025580313836
    [35]
    Yu Peilong, Zhang Lifeng, Liu Hu, et al. 2017. A dual-period response of the Kuroshio Extension SST to Aleutian Low activity in the winter season. Acta Oceanologica Sinica, 36(9): 1–9. doi: 10.1007/s13131-017-1104-1
    [36]
    Yu Peilong, Zhang Lifeng, Zhang Yongchui, et al. 2016. Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system. Acta Oceanologica Sinica, 35(5): 24–37. doi: 10.1007/s13131-016-0859-0
    [37]
    Zheng Chongwei, Li Chongyin. 2015. Variation of the wave energy and significant wave height in the China Sea and adjacent waters. Renewable and Sustainable Energy Reviews, 43: 381–387. doi: 10.1016/j.rser.2014.11.001
    [38]
    Zheng Chongwei, Li Chongyin, Pan Jing, et al. 2016. An overview of global ocean wind energy resources evaluations. Renewable and Sustainable Energy Reviews, 53: 1240–1251. doi: 10.1016/j.rser.2015.09.063
  • Relative Articles

  • Cited by

    Periodical cited type(30)

    1. Xuying Hu, Yixuan Li, Yue Dong, et al. Population characteristics of the dominant cold-water brittle star Ophiura sarsii vadicola (Ophiurida, Ophiuroidea) in the Yellow Sea. Journal of Oceanology and Limnology, 2025. doi:10.1007/s00343-024-4003-2
    2. Ting Lü, Hao Zhou, Mengfan He, et al. The summer pattern of phytoplankton pigment assemblages in response to water masses in the Yellow Sea. Journal of Oceanology and Limnology, 2025. doi:10.1007/s00343-025-4220-3
    3. Lei Zhang, Weishuai Xu, Maolin Li. Frontal slope: A new measure of ocean fronts. Journal of Sea Research, 2024, 199: 102493. doi:10.1016/j.seares.2024.102493
    4. Qi Zhang, Wenjin Sun, Huaihai Guo, et al. A Transfer Learning-Enhanced Generative Adversarial Network for Downscaling Sea Surface Height through Heterogeneous Data Fusion. Remote Sensing, 2024, 16(5): 763. doi:10.3390/rs16050763
    5. XingZe Zhang, YongHong Wang. Formation and preservation mechanisms of magnetofossils in the surface sediments of muddy areas in the yellow and Bohai Seas, China. Marine Geology, 2024, 477: 107401. doi:10.1016/j.margeo.2024.107401
    6. Zhaoyi Wang, Wei Yang, Guisheng Song, et al. Distribution, Seasonality, and Water‐Mass Transformation of Temperature and Salinity Inversions in the Southern Yellow Sea. Journal of Geophysical Research: Oceans, 2024, 129(4) doi:10.1029/2023JC020317
    7. Weishuai Xu, Lei Zhang, Xiaodong Ma, et al. The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction. Journal of Marine Science and Engineering, 2024, 12(11): 1918. doi:10.3390/jmse12111918
    8. Yakun Xu, Xinxin Yang, Rui Xiao, et al. Long-Chain Alkenones in the South Yellow Sea Sediments and Their Indicative Significance for Haptophytes Species. Journal of Ocean University of China, 2024, 23(5): 1287. doi:10.1007/s11802-024-5970-9
    9. Hao Li, Fangguo Zhai, Yujie Dong, et al. Interannual-decadal variations in the Yellow Sea Cold Water Mass in summer during 1958–2016 using an eddy-resolving hindcast simulation based on OFES2. Continental Shelf Research, 2024, 275: 105223. doi:10.1016/j.csr.2024.105223
    10. Weishuai Xu, Lei Zhang, Ming Li, et al. Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front. Journal of Marine Science and Engineering, 2024, 12(11): 2010. doi:10.3390/jmse12112010
    11. Qianshuo Zhao, Huimin Huang, Mark John Costello, et al. Climate change projections show shrinking deep-water ecosystems with implications for biodiversity and aquaculture in the Northwest Pacific. Science of The Total Environment, 2023, 861: 160505. doi:10.1016/j.scitotenv.2022.160505
    12. XingZe Zhang, YongHong Wang, GuangXue Li, et al. Authigenic greigite in late MIS 3 sediments: Implications for the Yellow Sea Cold Water Mass and Yellow Sea Warm Current evolution. Marine Geology, 2023, 460: 107057. doi:10.1016/j.margeo.2023.107057
    13. Weishuai Xu, Lei Zhang, Hua Wang, et al. Spatiotemporal characterization and prediction of the subsurface temperature front of the Kuroshio extension. Journal of Sea Research, 2023, 196: 102444. doi:10.1016/j.seares.2023.102444
    14. Changyuan Chen, Chen Wang, Huimin Li, et al. Detection and characteristics analysis of the western subarctic front using the high-resolution SST product. Acta Oceanologica Sinica, 2023, 42(6): 24. doi:10.1007/s13131-022-2102-5
    15. Yichao Ren, Xianhui Men, Yu Yu, et al. Effects of transportation stress on antioxidation, immunity capacity and hypoxia tolerance of rainbow trout (Oncorhynchus mykiss). Aquaculture Reports, 2022, 22: 100940. doi:10.1016/j.aqrep.2021.100940
    16. Hui Zheng, Wen-Zhou Zhang. An extreme warm event of the Yellow Sea Cold Water Mass in the summer of 2007 and its causes. Ocean Modelling, 2022, 176: 102067. doi:10.1016/j.ocemod.2022.102067
    17. Song-yin Wang, Wei-dong Zhai. Regional differences in seasonal variation of air–sea CO2 exchange in the Yellow Sea. Continental Shelf Research, 2021, 218: 104393. doi:10.1016/j.csr.2021.104393
    18. Yibo Wang, Xiaoke Hu, Yanyu Sun, et al. Influence of the cold bottom water on taxonomic and functional composition and complexity of microbial communities in the southern Yellow Sea during the summer. Science of The Total Environment, 2021, 759: 143496. doi:10.1016/j.scitotenv.2020.143496
    19. Martin J. Head. Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19. Progress in Earth and Planetary Science, 2021, 8(1) doi:10.1186/s40645-021-00439-2
    20. Minghan Zhu, Rujun Yang, Yan Li, et al. Seasonal and spatial variabilities of dissolved iron in southern Yellow Sea. Chemosphere, 2020, 256: 126856. doi:10.1016/j.chemosphere.2020.126856
    21. Han Su, Rujun Yang, Yan Li, et al. Influence of humic substances on iron distribution in the East China Sea. Chemosphere, 2018, 204: 450. doi:10.1016/j.chemosphere.2018.04.018
    22. Xiaoshou Liu, Qinghe Liu, Yan Zhang, et al. Effects of Yellow Sea Cold Water Mass on marine nematodes based on biological trait analysis. Marine Environmental Research, 2018, 141: 167. doi:10.1016/j.marenvres.2018.08.013
    23. S. L. Zhao, D. A. Wu. The Response of Storm Surge with Different Typhoon Tracks in Jiangsu Coastal. International Journal of Environmental Science and Development, 2017, 8(8): 570. doi:10.18178/ijesd.2017.8.8.1017
    24. Li Li, Wang Xiaojing, Liu Jihua, et al. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China. Journal of Geophysical Research: Oceans, 2017, 122(2): 1190. doi:10.1002/2016JC012500
    25. Qin-Sheng Wei, Xian-Sen Li, Bao-Dong Wang, et al. Seasonally chemical hydrology and ecological responses in frontal zone of the central southern Yellow Sea. Journal of Sea Research, 2016, 112: 1. doi:10.1016/j.seares.2016.02.004
    26. Xuemei Xu, Kunpeng Zang, Cheng Huo, et al. Aragonite saturation state and dynamic mechanism in the southern Yellow Sea, China. Marine Pollution Bulletin, 2016, 109(1): 142. doi:10.1016/j.marpolbul.2016.06.009
    27. Xuemei Xu, Kunpeng Zang, Huade Zhao, et al. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes. Journal of Marine Systems, 2016, 159: 89. doi:10.1016/j.jmarsys.2016.03.009
    28. Liang Xue, Longjun Zhang, Wei-Jun Cai, et al. Air–sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Continental Shelf Research, 2011, 31(18): 1904. doi:10.1016/j.csr.2011.09.002
    29. Longjun Zhang, Liang Xue, Meiqin Song, et al. Distribution of the surface partial pressure of CO2 in the southern Yellow Sea and its controls. Continental Shelf Research, 2010, 30(3-4): 293. doi:10.1016/j.csr.2009.11.009
    30. Yun-Wei Dong. Aquaculture Ecology. doi:10.1007/978-981-19-5486-3_14

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.9 %FULLTEXT: 30.9 %META: 66.3 %META: 66.3 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area DistributionAustralia: 0.7 %Australia: 0.7 %China: 32.1 %China: 32.1 %India: 1.9 %India: 1.9 %Japan: 0.7 %Japan: 0.7 %Korea Republic of: 1.0 %Korea Republic of: 1.0 %Russian Federation: 7.4 %Russian Federation: 7.4 %United Kingdom: 0.5 %United Kingdom: 0.5 %United States: 55.8 %United States: 55.8 %AustraliaChinaIndiaJapanKorea Republic ofRussian FederationUnited KingdomUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (338) PDF downloads(12) Cited by(30)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return