Citation: | Peilong Yu, Lifeng Zhang, Mingyang Liu, Quanjia Zhong, Yongchui Zhang, Xin Li. A comparison of the strength and position variability of the Kuroshio Extension SST front[J]. Acta Oceanologica Sinica, 2020, 39(5): 26-34. doi: 10.1007/s13131-020-1567-3 |
[1] |
Bretherton C S, Widmann M, Dymnikov V P, et al. 1999. The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12(7): 1990–2009. doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
|
[2] |
Ceballos L I, Di Lorenzo E, Hoyos C D, et al. 2009. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. Journal of Climate, 22(19): 5163–5174. doi: 10.1175/2009JCLI2848.1
|
[3] |
Chen Shuiming. 2008. The Kuroshio Extension front from satellite sea surface temperature measurements. Journal of Oceanography, 64(6): 891–897. doi: 10.1007/s10872-008-0073-6
|
[4] |
Ding Ruiqiang, Li Jianping, Tseng Y H. 2015. The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dynamics, 44(7–8): 2017–2034. doi: 10.1007/s00382-014-2303-5
|
[5] |
Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysics Research: Oceans, 105(C8): 19477–19498. doi: 10.1029/2000JC900063
|
[6] |
Esbensen S K. 1984. A comparison of intermonthly and interannual teleconnections in the 700 mb geopotential height field during the northern hemisphere winter. Monthly Weather Review, 112(10): 2016–2032. doi: 10.1175/1520-0493(1984)112<2016:ACOIAI>2.0.CO;2
|
[7] |
Frankignoul C, Sennéchael N, Kwon Y O, et al. 2011. Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. Journal of Climate, 24(3): 762–777. doi: 10.1175/2010JCLI3731.1
|
[8] |
Fu L L, Qiu Bo. 2002. Low-frequency variability of the North Pacific Ocean: the roles of boundary-and wind-driven baroclinic Rossby waves. Journal of Geophysics Research: Oceans, 107(C12): 13-1–13-10. doi: 10.1029/2001JC001131
|
[9] |
Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP-NCAR 40-Year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
[10] |
Kawai Y, Miyama T, Iizuka S, et al. 2015. Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. Journal of Oceanography, 71(5): 511–526. doi: 10.1007/s10872-014-0266-0
|
[11] |
Kelly K A, Small R J, Samelson R M, et al. 2010. Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. Journal of Climate, 23(21): 5644–5667. doi: 10.1175/2010JCLI3346.1
|
[12] |
Kida S, Mitsudera H, Aoki S, et al. 2015. Oceanic fronts and jets around Japan: a review. Journal of Oceanography, 71(5): 469–497. doi: 10.1007/s10872-015-0283-7
|
[13] |
Kwon Y O, Deser C. 2007. North Pacific decadal variability in the Community Climate System Model version 2. Journal of Climate, 20(11): 2416–2433. doi: 10.1175/JCLI4103.1
|
[14] |
Linkin M E, Nigam S. 2008. The North Pacific Oscillation-west Pacific teleconnection pattern: mature-phase structure and winter impacts. Journal of Climate, 21(9): 1979–1997. doi: 10.1175/2007JCLI2048.1
|
[15] |
Masunaga R, Nakamura H, Miyasaka T, et al. 2015. Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. Journal of Climate, 28(5): 1764–1787. doi: 10.1175/JCLI-D-14-00314.1
|
[16] |
Masunaga R, Nakamura H, Miyasaka T, et al. 2016. Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. Journal of Climate, 29(9): 3273–3296. doi: 10.1175/JCLI-D-15-0545.1
|
[17] |
Mizuno K, White W B. 1983. Annual and interannual variability in the Kuroshio current system. Journal of Physical Oceanography, 13(10): 1847–1867. doi: 10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2
|
[18] |
Nonaka M, Nakamura H, Tanimoto Y, et al. 2006. Decadal variability in the Kuroshio-Oyashio Extension simulated in an eddy-resolving OGCM. Journal of Climate, 19(10): 1970–1989. doi: 10.1175/JCLI3793.1
|
[19] |
O’Reilly C H, Czaja A. 2015. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quarterly Journal of the Royal Meteorological Society, 141(686): 52–66. doi: 10.1002/qj.2334
|
[20] |
Qiu Bo. 2003. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. Journal of Physical Oceanography, 33(12): 2465–2482. doi: 10.1175/2459.1
|
[21] |
Qiu Bo, Chen Shuiming. 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090–2103. doi: 10.1175/JPO2807.1
|
[22] |
Qiu Bo, Chen Shuiming. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(13–14): 1098–1110. doi: 10.1016/j.dsr2.2008.11.036
|
[23] |
Qiu Bo, Chen Shuiming, Schneider N, et al. 2014. A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. Journal of Climate, 27(4): 1751–1764. doi: 10.1175/JCLI-D-13-00318.1
|
[24] |
Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496. doi: 10.1175/2007JCLI1824.1
|
[25] |
Sasaki Y N, Minobe S, Schneider N. 2013. Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-jet theory. Journal of Physical Oceanography, 43(2): 442–456. doi: 10.1175/JPO-D-12-096.1
|
[26] |
Seo Y, Sugimoto S, Hanawa K. 2014. Long-term variations of the Kuroshio Extension path in winter: meridional movement and path state change. Journal of Climate, 27(15): 5929–5940. doi: 10.1175/JCLI-D-13-00641.1
|
[27] |
Sugimoto S, Hanawa K. 2009. Decadal and interdecadal variations of the Aleutian low activity and their relation to upper oceanic variations over the North Pacific. Journal of the Meteorological Society of Japan, 87(4): 601–614. doi: 10.2151/jmsj.87.601
|
[28] |
Sugimoto S, Hanawa K. 2011. Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio confluence region: Influences of warm eddies detached from the Kuroshio Extension. Journal of Climate, 24(24): 6551–6561. doi: 10.1175/2011JCLI4023.1
|
[29] |
Sugimoto S, Kobayashi N, Hanawa K. 2014. Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: The influence of Kuroshio Extension path state. Journal of Physical Oceanography, 44(10): 2753–2762. doi: 10.1175/JPO-D-13-0265.1
|
[30] |
Taguchi B, Xie Shangping, Schneider N, et al. 2007. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast. Journal of Climate, 20(11): 2357–2377. doi: 10.1175/JCLI4142.1
|
[31] |
Tokinaga H, Tanimoto Y, Xie Shangping, et al. 2009. Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. Journal of Climate, 22(16): 4241–4260. doi: 10.1175/2009JCLI2763.1
|
[32] |
Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4): 784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
|
[33] |
Wang Yanxin, Yang Xiaoyi, Hu Jianyu. 2016. Position variability of the Kuroshio Extension sea surface temperature front. Acta Oceanologica Sinica, 35(7): 30–35. doi: 10.1007/s13131-016-0909-7
|
[34] |
Yasuda I. 2003. Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59(4): 389–402. doi: 10.1023/A:1025580313836
|
[35] |
Yu Peilong, Zhang Lifeng, Liu Hu, et al. 2017. A dual-period response of the Kuroshio Extension SST to Aleutian Low activity in the winter season. Acta Oceanologica Sinica, 36(9): 1–9. doi: 10.1007/s13131-017-1104-1
|
[36] |
Yu Peilong, Zhang Lifeng, Zhang Yongchui, et al. 2016. Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system. Acta Oceanologica Sinica, 35(5): 24–37. doi: 10.1007/s13131-016-0859-0
|
[37] |
Zheng Chongwei, Li Chongyin. 2015. Variation of the wave energy and significant wave height in the China Sea and adjacent waters. Renewable and Sustainable Energy Reviews, 43: 381–387. doi: 10.1016/j.rser.2014.11.001
|
[38] |
Zheng Chongwei, Li Chongyin, Pan Jing, et al. 2016. An overview of global ocean wind energy resources evaluations. Renewable and Sustainable Energy Reviews, 53: 1240–1251. doi: 10.1016/j.rser.2015.09.063
|
1. | Xuying Hu, Yixuan Li, Yue Dong, et al. Population characteristics of the dominant cold-water brittle star Ophiura sarsii vadicola (Ophiurida, Ophiuroidea) in the Yellow Sea. Journal of Oceanology and Limnology, 2025. doi:10.1007/s00343-024-4003-2 | |
2. | Ting Lü, Hao Zhou, Mengfan He, et al. The summer pattern of phytoplankton pigment assemblages in response to water masses in the Yellow Sea. Journal of Oceanology and Limnology, 2025. doi:10.1007/s00343-025-4220-3 | |
3. | Lei Zhang, Weishuai Xu, Maolin Li. Frontal slope: A new measure of ocean fronts. Journal of Sea Research, 2024, 199: 102493. doi:10.1016/j.seares.2024.102493 | |
4. | Qi Zhang, Wenjin Sun, Huaihai Guo, et al. A Transfer Learning-Enhanced Generative Adversarial Network for Downscaling Sea Surface Height through Heterogeneous Data Fusion. Remote Sensing, 2024, 16(5): 763. doi:10.3390/rs16050763 | |
5. | XingZe Zhang, YongHong Wang. Formation and preservation mechanisms of magnetofossils in the surface sediments of muddy areas in the yellow and Bohai Seas, China. Marine Geology, 2024, 477: 107401. doi:10.1016/j.margeo.2024.107401 | |
6. | Zhaoyi Wang, Wei Yang, Guisheng Song, et al. Distribution, Seasonality, and Water‐Mass Transformation of Temperature and Salinity Inversions in the Southern Yellow Sea. Journal of Geophysical Research: Oceans, 2024, 129(4) doi:10.1029/2023JC020317 | |
7. | Weishuai Xu, Lei Zhang, Xiaodong Ma, et al. The Parameterized Oceanic Front-Guided PIX2PIX Model: A Limited Data-Driven Approach to Oceanic Front Sound Speed Reconstruction. Journal of Marine Science and Engineering, 2024, 12(11): 1918. doi:10.3390/jmse12111918 | |
8. | Yakun Xu, Xinxin Yang, Rui Xiao, et al. Long-Chain Alkenones in the South Yellow Sea Sediments and Their Indicative Significance for Haptophytes Species. Journal of Ocean University of China, 2024, 23(5): 1287. doi:10.1007/s11802-024-5970-9 | |
9. | Hao Li, Fangguo Zhai, Yujie Dong, et al. Interannual-decadal variations in the Yellow Sea Cold Water Mass in summer during 1958–2016 using an eddy-resolving hindcast simulation based on OFES2. Continental Shelf Research, 2024, 275: 105223. doi:10.1016/j.csr.2024.105223 | |
10. | Weishuai Xu, Lei Zhang, Ming Li, et al. Data-Driven Analysis of Ocean Fronts’ Impact on Acoustic Propagation: Process Understanding and Machine Learning Applications, Focusing on the Kuroshio Extension Front. Journal of Marine Science and Engineering, 2024, 12(11): 2010. doi:10.3390/jmse12112010 | |
11. | Qianshuo Zhao, Huimin Huang, Mark John Costello, et al. Climate change projections show shrinking deep-water ecosystems with implications for biodiversity and aquaculture in the Northwest Pacific. Science of The Total Environment, 2023, 861: 160505. doi:10.1016/j.scitotenv.2022.160505 | |
12. | XingZe Zhang, YongHong Wang, GuangXue Li, et al. Authigenic greigite in late MIS 3 sediments: Implications for the Yellow Sea Cold Water Mass and Yellow Sea Warm Current evolution. Marine Geology, 2023, 460: 107057. doi:10.1016/j.margeo.2023.107057 | |
13. | Weishuai Xu, Lei Zhang, Hua Wang, et al. Spatiotemporal characterization and prediction of the subsurface temperature front of the Kuroshio extension. Journal of Sea Research, 2023, 196: 102444. doi:10.1016/j.seares.2023.102444 | |
14. | Changyuan Chen, Chen Wang, Huimin Li, et al. Detection and characteristics analysis of the western subarctic front using the high-resolution SST product. Acta Oceanologica Sinica, 2023, 42(6): 24. doi:10.1007/s13131-022-2102-5 | |
15. | Yichao Ren, Xianhui Men, Yu Yu, et al. Effects of transportation stress on antioxidation, immunity capacity and hypoxia tolerance of rainbow trout (Oncorhynchus mykiss). Aquaculture Reports, 2022, 22: 100940. doi:10.1016/j.aqrep.2021.100940 | |
16. | Hui Zheng, Wen-Zhou Zhang. An extreme warm event of the Yellow Sea Cold Water Mass in the summer of 2007 and its causes. Ocean Modelling, 2022, 176: 102067. doi:10.1016/j.ocemod.2022.102067 | |
17. | Song-yin Wang, Wei-dong Zhai. Regional differences in seasonal variation of air–sea CO2 exchange in the Yellow Sea. Continental Shelf Research, 2021, 218: 104393. doi:10.1016/j.csr.2021.104393 | |
18. | Yibo Wang, Xiaoke Hu, Yanyu Sun, et al. Influence of the cold bottom water on taxonomic and functional composition and complexity of microbial communities in the southern Yellow Sea during the summer. Science of The Total Environment, 2021, 759: 143496. doi:10.1016/j.scitotenv.2020.143496 | |
19. | Martin J. Head. Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19. Progress in Earth and Planetary Science, 2021, 8(1) doi:10.1186/s40645-021-00439-2 | |
20. | Minghan Zhu, Rujun Yang, Yan Li, et al. Seasonal and spatial variabilities of dissolved iron in southern Yellow Sea. Chemosphere, 2020, 256: 126856. doi:10.1016/j.chemosphere.2020.126856 | |
21. | Han Su, Rujun Yang, Yan Li, et al. Influence of humic substances on iron distribution in the East China Sea. Chemosphere, 2018, 204: 450. doi:10.1016/j.chemosphere.2018.04.018 | |
22. | Xiaoshou Liu, Qinghe Liu, Yan Zhang, et al. Effects of Yellow Sea Cold Water Mass on marine nematodes based on biological trait analysis. Marine Environmental Research, 2018, 141: 167. doi:10.1016/j.marenvres.2018.08.013 | |
23. | S. L. Zhao, D. A. Wu. The Response of Storm Surge with Different Typhoon Tracks in Jiangsu Coastal. International Journal of Environmental Science and Development, 2017, 8(8): 570. doi:10.18178/ijesd.2017.8.8.1017 | |
24. | Li Li, Wang Xiaojing, Liu Jihua, et al. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China. Journal of Geophysical Research: Oceans, 2017, 122(2): 1190. doi:10.1002/2016JC012500 | |
25. | Qin-Sheng Wei, Xian-Sen Li, Bao-Dong Wang, et al. Seasonally chemical hydrology and ecological responses in frontal zone of the central southern Yellow Sea. Journal of Sea Research, 2016, 112: 1. doi:10.1016/j.seares.2016.02.004 | |
26. | Xuemei Xu, Kunpeng Zang, Cheng Huo, et al. Aragonite saturation state and dynamic mechanism in the southern Yellow Sea, China. Marine Pollution Bulletin, 2016, 109(1): 142. doi:10.1016/j.marpolbul.2016.06.009 | |
27. | Xuemei Xu, Kunpeng Zang, Huade Zhao, et al. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes. Journal of Marine Systems, 2016, 159: 89. doi:10.1016/j.jmarsys.2016.03.009 | |
28. | Liang Xue, Longjun Zhang, Wei-Jun Cai, et al. Air–sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Continental Shelf Research, 2011, 31(18): 1904. doi:10.1016/j.csr.2011.09.002 | |
29. | Longjun Zhang, Liang Xue, Meiqin Song, et al. Distribution of the surface partial pressure of CO2 in the southern Yellow Sea and its controls. Continental Shelf Research, 2010, 30(3-4): 293. doi:10.1016/j.csr.2009.11.009 | |
30. | Yun-Wei Dong. Aquaculture Ecology. doi:10.1007/978-981-19-5486-3_14 |