Citation: | Zhe Hu, Xiaoying Zhang, Weicheng Cui, Fang Wang, Xiaowen Li, Yan Li. A simple method of depressing numerical dissipation effects during wave simulation within the Euler model[J]. Acta Oceanologica Sinica, 2020, 39(1): 141-156. doi: 10.1007/s13131-019-1524-1 |
[1] |
Abbasnia A, Ghiasi M. 2015. Fully nonlinear wave interaction with an array of truncated barriers in three dimensional numerical wave tank. Engineering Analysis with Boundary Elements, 58: 79–85. doi: 10.1016/j.enganabound.2015.03.015
|
[2] |
Abbasnia A, Ghiasi M, Abbasnia A. 2017. Irregular wave transmission on bottom bumps using fully nonlinear NURBS numerical wave tank. Engineering Analysis with Boundary Elements, 82: 130–140
|
[3] |
Abbasnia A, Soares C G. 2018. Transient fully nonlinear ship waves using a three-dimensional NURBS numerical towing tank. Engineering Analysis with Boundary Elements, 91: 44–49. doi: 10.1016/j.enganabound.2018.03.011
|
[4] |
Alvarado-Rodríguez C E, Klapp J, Sigalotti L D G, et al. 2017. Nonreflecting outlet boundary conditions for incompressible flows using SPH. Computers & Fluids, 159: 177–188
|
[5] |
Anbarsooz M, Passandideh-Fard M, Moghiman M. 2013. Fully nonlinear viscous wave generation in numerical wave tanks. Ocean Engineering, 59: 73–85. doi: 10.1016/j.oceaneng.2012.11.011
|
[6] |
Beljadid A, LeFloch P G, Mishra S, et al. 2017. Schemes with well-controlled dissipation. hyperbolic systems in nonconservative form. Communications in Computational Physics, 21(4): 913–946
|
[7] |
Bihs H, Kamath A, Chella M A, et al. 2016. A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics. Computers & Fluids, 140: 191–208
|
[8] |
Cao Zhiwei, Liu Zhifeng, Wang Xiaohong, et al. 2017. A dissipation-free numerical method to solve one-dimensional hyperbolic flow equations. International Journal for Numerical Methods in Fluids, 85(4): 247–263. doi: 10.1002/fld.4383
|
[9] |
Daubechies I. 1992. Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics
|
[10] |
De Paulo G S, Tomé M F, McKee S. 2007. A marker-and-cell approach to viscoelastic free surface flows using the PTT model. Journal of Non-Newtonian Fluid Mechanics, 147(3): 149–174. doi: 10.1016/j.jnnfm.2007.08.003
|
[11] |
Dean R G, Dalrymple R A. 1991. Water Wave Mechanics for Engineers & Scientists (Vol. 2). Singapore: World Scientific Publishing Company
|
[12] |
Elhanafi A, Macfarlane G, Fleming A, et al. 2017. Experimental and numerical measurements of wave forces on a 3D offshore stationary OWC wave energy converter. Ocean Engineering, 144: 98–117. doi: 10.1016/j.oceaneng.2017.08.040
|
[13] |
Ferziger J H, Peric M. 2012. Computational Methods for Fluid Dynamics. Berlin Heidelberg: Springer
|
[14] |
Hasan S A, Sriram V, Selvam R P. 2018. Numerical modelling of wind-modified focused waves in a numerical wave tank. Ocean Engineering, 160: 276–300. doi: 10.1016/j.oceaneng.2018.04.044
|
[15] |
Hu Zhe, Tang Wenyong, Xue Hongxiang, et al. 2015. Numerical simulations using conserved wave absorption applied to Navier–Stokes equation model. Coastal Engineering, 99: 15–25. doi: 10.1016/j.coastaleng.2015.02.007
|
[16] |
Hu Zhe, Tang Wenyong, Xue Hongxiang, et al. 2017. Numerical study of rogue wave overtopping with a fully-coupled fluid-structure interaction model. Ocean Engineering, 137: 48–58. doi: 10.1016/j.oceaneng.2017.03.022
|
[17] |
Li Zhao, Zhang Yufei, Chen Haixin. 2015. A low dissipation numerical scheme for implicit large eddy simulation. Computers & Fluids, 117: 233–246
|
[18] |
Liu Xin, Lin Pengzhi, Shao Songdong. 2015. ISPH wave simulation by using an internal wave maker. Coastal Engineering, 95: 160–170. doi: 10.1016/j.coastaleng.2014.10.007
|
[19] |
Ma Z H, Causon D M, Qian L, et al. 2016. Numerical investigation of air enclosed wave impacts in a depressurised tank. Ocean Engineering, 123: 15–27. doi: 10.1016/j.oceaneng.2016.06.044
|
[20] |
Nazari F, Mohammadian A, Charron M. 2015. High-order low-dissipation low-dispersion diagonally implicit Runge–Kutta schemes. Journal of Computational Physics, 286: 38–48. doi: 10.1016/j.jcp.2015.01.020
|
[21] |
Panicker P G, Goel A, Iyer H R. 2015. Numerical modeling of advancing wave front in dam break problem by incompressible navier-stokes solver. Aquatic Procedia, 4: 861–867. doi: 10.1016/j.aqpro.2015.02.108
|
[22] |
Park J C, Uno Y, Sato T, et al. 2004. Numerical reproduction of fully nonlinear multi-directional waves by a viscous 3D numerical wave tank. Ocean Engineering, 31(11–12): 1549–1565
|
[23] |
Saincher S, Banerjeea J. 2015. Design of a numerical wave tank and wave flume for low steepness waves in deep and intermediate water. Procedia Engineering, 116: 221–228. doi: 10.1016/j.proeng.2015.08.394
|
[24] |
Schillaci E, Jofre L, Balcázar N, et al. 2016. A level-set aided single-phase model for the numerical simulation of free-surface flow on unstructured meshes. Computers & Fluids, 140: 97–110
|
[25] |
Schranner F S, Domaradzki J A, Hickel S, et al. 2015. Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows. Computers & Fluids, 114: 84–97
|
[26] |
Soares D Jr. 2019. A simple explicit-implicit time-marching technique for wave propagation analysis. International Journal of Computational Methods, 16(1): 1850082. doi: 10.1142/S0219876218500822
|