Wei Cui, Wei Wang, Jie Zhang, Jungang Yang. Identification and census statistics of multicore eddies based on sea surface height data in global oceans[J]. Acta Oceanologica Sinica, 2020, 39(1): 41-51. doi: 10.1007/s13131-019-1519-y
Citation: Wei Cui, Wei Wang, Jie Zhang, Jungang Yang. Identification and census statistics of multicore eddies based on sea surface height data in global oceans[J]. Acta Oceanologica Sinica, 2020, 39(1): 41-51. doi: 10.1007/s13131-019-1519-y

Identification and census statistics of multicore eddies based on sea surface height data in global oceans

doi: 10.1007/s13131-019-1519-y
Funds:  The National Key Reasearch and Development Program of China under contract No. 2016YFC1401800; the National Natural Science Foundation of China under contract No. 41576176; the National Programme on Global Change and Air-Sea Interaction; Dragon 4 Project under contract No. 32292 .
More Information
  • Corresponding author: Jungang Yang (yangjg@fio.org.cn)
  • Received Date: 2018-07-28
  • Accepted Date: 2018-11-05
  • Available Online: 2020-04-21
  • Publish Date: 2020-01-20
  • This study produced a statistical analysis of multicore eddy structures based on 23 years' altimetry data in global oceans. Multicore structures were identified using a threshold-free closed-contour algorithm of sea surface height, which was improved for this study in respect of certain technical details. Meanwhile a more accurate definition of eddy boundary was used to estimate eddy scale. Generally, multicore structures, which have two or more closed eddies of the same polarity within their boundaries, represent an important transitional stage in their lives during which the component eddies might experience splitting or merging. In comparison with global eddies, the lifetimes and propagation distances of multicore eddies were found to be much smaller because of their inherent structural instability. However, at the same latitude, the spatial scale of multicore eddies was found larger than that of single-core eddies, i.e., the eddy area could be at least twice as large. Multicore eddies were found to exhibit some features similar to global eddies. For example, multicore eddies tend to occur in the Antarctic Circumpolar Current, some western boundary currents, and mid-latitude regions around 25°N/S, the majority (70%) of eddies propagate westward while only 30% propagate eastward, and large-amplitude eddies are restricted mainly to reasonably confined regions of highly unstable currents.
  • loading
  • [1]
    Abernathey R P, Marshall J. 2013. Global surface eddy diffusivities derived from satellite altimetry. Journal of Geophysical Research: Oceans, 118(2): 901–916. doi: 10.1002/jgrc.20066
    Adams D K, McGillicuddy D J Jr, Zamudio L, et al. 2011. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science, 332(6029): 580–583. doi: 10.1126/science.1201066
    AVISO. 2017. Statistical analysis on the mesoscale eddy trajectory atlas product. https://www.aviso.altimetry.fr/fileadmin/documents/data/products/value-added/aviso_validation_report_eddy_tracking.pdf (2017,06)
    Birol F, Morrow R. 2001. Source of the baroclinic waves in the southeast Indian Ocean. Journal of Geophysical Research: Oceans, 106(C5): 9145–9160. doi: 10.1029/2000JC900044
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025. doi: 10.1029/2011JC007134
    Chaigneau A, Pizarro O. 2005. Eddy characteristics in the eastern South Pacific. Journal of Geophysical Research: Oceans, 110(C6): C06005
    Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    Chelton D B, Schlax M G. 1996. Global observations of oceanic Rossby waves. Science, 272(5259): 234–238. doi: 10.1126/science.272.5259.234
    Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    Cui Wei, Yang Jungang, Ma Yi. 2016. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22-year altimetry data. Acta Oceanologica Sinica, 35(11): 16–27. doi: 10.1007/s13131-016-0945-3
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    Dufau C, Labroue S, Dibarboure G, et al. 2013. Reducing altimetry small-scales errors to access (sub) mesoscale dynamics. In: Proceedings of Ocean Surface Topography Science Team (OSTST) Meeting. Boulder, CO: UCAR
    Dufau C, Orsztynowicz M, Dibarboure G, et al. 2016. Mesoscale resolution capability of altimetry: Present and future. Journal of Geophysical Research: Oceans, 121(7): 4910–4927. doi: doi:10.1002/2015JC010904
    Feng M, Wijffels S. 2002. Intraseasonal variability in the South Equatorial current of the East Indian Ocean. Journal of Physical Oceanography, 32(1): 265–277. doi: 10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2
    Flierl G R. 1981. Particle motions in large-amplitude wave fields. Geophysical & Astrophysical Fluid Dynamics, 18(1–2): 39–74
    Fu L L. 2009. Pattern and velocity of propagation of the global ocean eddy variability. Journal of Geophysical Research: Oceans, 114(C11): C11017. doi: 10.1029/2009JC005349
    Fu L L, Chelton D B, Le Traon P Y, et al. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14–25. doi: 10.5670/oceanog.2010.02
    Gaube P. 2013. Satellite observations of the influence of mesoscale ocean eddies on near-surface temperature, phytoplankton and surface stress[dissertation]. Oregon: Oregon State University
    Henson S A, Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 163–176. doi: 10.1016/j.dsr.2007.11.005
    Hughes C W, Jones M S, Carnochan S. 1998. Use of transient features to identify eastward currents in the Southern Ocean. Journal of Geophysical Research: Oceans, 103(C2): 2929–2943. doi: 10.1029/97JC02442
    Li Qiuyang, Sun Liang. 2015. Technical Note: watershed strategy for oceanic mesoscale eddy splitting. Ocean Science, 11(2): 269–273. doi: 10.5194/os-11-269-2015
    Maltrud M E, McClean J L. 2005. An eddy resolving global 1/10° ocean simulation. Ocean Modelling, 8(1–2): 31–54. doi: 10.1016/j.ocemod.2003.12.001
    Nencioli F, Dong C M, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
    Overman II E A, Zabusky N J. 1982. Evolution and merger of isolated vortex structures. The Physics of Fluids, 25(8): 1297–1305. doi: 10.1063/1.863907
    Palacios D M, Bograd S J. 2005. A census of Tehuantepec and Papagayo eddies in the northeastern tropical Pacific. Geophysical Research Letters, 32(23): L23606. doi: 10.1029/2005GL024324
    Prants S V, Budyansky M V, Ponomarev V I, et al. 2011. Lagrangian study of transport and mixing in a mesoscale eddy street. Ocean Modelling, 38(1–2): 114–125. doi: 10.1016/j.ocemod.2011.02.008
    Robinson I S. 2010. Mesoscale ocean features: eddies. In: Robinson I S, ed. Discovering the Ocean from Space. Berlin Heidelberg: Springer, 69–114
    Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3): 675–687. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
    Samelson R M. 1992. Fluid exchange across a meandering jet. Journal of Physical Oceanography, 22(4): 431–444. doi: 10.1175/1520-0485(1992)022<0431:FEAAMJ>2.0.CO;2
    Schlax M G, Chelton D B. 2016. The “Growing Method” of eddy identification and tracking in two and three dimensions[dissertation]. Oregon: College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 2016
    Thompson A F, Heywood K J, Schmidtko S, et al. 2014. Eddy transport as a key component of the Antarctic overturning circulation. Nature Geoscience, 7(12): 879–884. doi: 10.1038/ngeo2289
    Trieling R R, Fuentes O V, van Heijst G J F. 2005. Interaction of two unequal corotating vortices. Physics of Fluids, 17(8): 087103. doi: 10.1063/1.1993887
    Wang Zifi, Li Qiuyang, Sun Liang, et al. 2015. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Frontiers of Earth Science, 9(2): 202–208. doi: 10.1007/s11707-014-0478-z
    Willett C S, Leben R R, Lavín M F. 2006. Eddies and tropical instability waves in the eastern tropical Pacific: a review. Progress in Oceanography, 69(2–4): 218–238. doi: 10.1016/j.pocean.2006.03.010
    Xu Chi, Shang Xiaodong, Huang Ruixin. 2011. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data. Ocean Dynamics, 61(4): 525–541. doi: 10.1007/s10236-011-0377-8
    Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    Yi Jiawei, Du Y, He Z, et al. 2014. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Science, 10(1): 39–48. doi: 10.5194/os-10-39-2014
    Yi Jiawei, Du Yunyan, Zhou Chenghu, et al. 2015. Automatic identification of oceanic multieddy structures from satellite altimeter datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1555–1563. doi: 10.1109/JSTARS.2015.2417876
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (245) PDF downloads(127) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint