Yi Yu, Hailong Liu, Pengfei Lin, Jian Lan. The impact of oceanic processes on the transient climate response: a tidal forcing experiment[J]. Acta Oceanologica Sinica, 2020, 39(1): 52-62. doi: 10.1007/s13131-019-1466-0
Citation: Yi Yu, Hailong Liu, Pengfei Lin, Jian Lan. The impact of oceanic processes on the transient climate response: a tidal forcing experiment[J]. Acta Oceanologica Sinica, 2020, 39(1): 52-62. doi: 10.1007/s13131-019-1466-0

The impact of oceanic processes on the transient climate response: a tidal forcing experiment

doi: 10.1007/s13131-019-1466-0
Funds:  The National Key Research and Development Program for Developing Basic Sciences under contract Nos 2016YFC1401401 and 2016YFC1401601; the “Strategic Priority Research Program” of the Chinese Academy of Sciences under contract Nos XDA11010304, XDA05110302 and XDC01040100; the National Natural Science Foundation of China under contract Nos 41576026, 41576025, 41776030 and 41931183.
More Information
  • Corresponding author: E-mail: lhl@lasg.iap.ac.cn
  • Received Date: 2018-10-28
  • Accepted Date: 2019-04-15
  • Available Online: 2020-04-21
  • Publish Date: 2020-01-20
  • In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed Exp_Tide and Exp_Control, respectively. After introducing tidal forcing, the transient climate response (TCR) decreases from 2.32 K to 1.90 K, and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in Exp_Tide. Approximately 21% more heat is stored in the ocean in Exp_Tide (1.10×1024J) than in Exp_Control (0.91×1024J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation (AMOC). The initial transport at mid- and high latitudes and the decline in the AMOC observed in Exp_Tide are both larger than those observed in Exp_Control. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in Exp_Tide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.
  • loading
  • [1]
    Bao Qing, Lin Pengfei, Zhou Tianjun, et al. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Advances in Atmospheric Sciences, 30(3): 561–576. doi: 10.1007/s00376-012-2113-9
    [2]
    Bao Qing, Wu Guoxiong, Liu Yimin, et al. 2010. An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Advances in Atmospheric Sciences, 27(5): 1131–1142. doi: 10.1007/s00376-010-9177-1
    [3]
    Bitz C M, Gent P R, Woodgate R A, et al. 2006. The influence of sea ice on ocean heat uptake in response to increasing CO2. Journal of Climate, 19(11): 2437–2450. doi: 10.1175/JCLI3756.1
    [4]
    Boé J, Hall A, Qu X. 2009. Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophysical Research Letters, 36(22): L22701. doi: 10.1029/2009GL040845
    [5]
    Brierley C M, Collins M, Thorpe A J. 2010. The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Climate Dynamics, 34(2–3): 325–343. doi: 10.1007/s00382-008-0486-3
    [6]
    Canuto V M, Howard A, Cheng Y, et al. 2001. Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. Journal of Physical Oceanography, 31(6): 1413–1426. doi: 10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2
    [7]
    Collins M, Brierley C M, MacVean M, et al. 2007. The sensitivity of the rate of transient climate change to ocean physics perturbations. Journal of Climate, 20(10): 2315–2320. doi: 10.1175/JCLI4116.1
    [8]
    Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: projections, commitments, and irreversibility. In: Stocker T F, Qin D, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press.
    [9]
    Cubasch U, Meehl G A, Boer G J, et al. 2001. Projections of future climate change. In: Houghton J T, Ding Y, Griggs D J, et al, eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel. London: Cambridge University Press, 526–582.
    [10]
    Exarchou E, Von Storch J S, Jungclaus J H. 2014. Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Climate Dynamics, 42(7–8): 1755–1773. doi: 10.1007/s00382-013-1776-y
    [11]
    Flato G, Marotzke J, Abiodun B, et al. 2013. Evaluation of climate models. In: Stocker T F, Qin D W, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    [12]
    Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1): 150–160. doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
    [13]
    Gregory J M. 2000. Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dynamics, 16(7): 501–515. doi: 10.1007/s003820000059
    [14]
    Gregory J M, Dixon K W, Stouffer R J, et al. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophysical Research Letters, 32(12): L12703
    [15]
    Gregory J M, Forster P M. 2008. Transient climate response estimated from radiative forcing and observed temperature change. Journal of Geophysical Research: Atmospheres, 113(D23): D23105. doi: 10.1029/2008JD010405
    [16]
    Gregory J M, Ingram W J, Palmer M A, et al. 2004. A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters, 31(3): L03205
    [17]
    Griffies S M, Schmidt M, Herzfeld M. 2009a. Elements of mom4p1. GFDL Ocean Group Technical Report No. 6. Geophysical Fluid Dynamics Laboratory, 444. Princeton, USA.
    [18]
    Griffies S M, Biastoch A, Böning C, et al. 2009b. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1–2): 1–46. doi: 10.1016/j.ocemod.2008.08.007
    [19]
    Griffies S M, Winton M, Anderson W G, et al. 2015. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. Journal of Climate, 28(3): 952–977. doi: 10.1175/JCLI-D-14-00353.1
    [20]
    Guan Yuping, Huang Ruixin. 2008. Stommel’s box model of thermohaline circulation revisited—The role of mechanical energy supporting mixing and the wind-driven gyration. Journal of Physical Oceanography, 38(4): 909–917. doi: 10.1175/2007JPO3535.1
    [21]
    He J, Winton M, Vecchi G, et al. 2017. Transient climate sensitivity depends on base climate ocean circulation. Journal of Climate, 30(4): 1493–1504. doi: 10.1175/JCLI-D-16-0581.1
    [22]
    Held I M, Winton M, Takahashi K, et al. 2010. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. Journal of Climate, 23(9): 2418–2427. doi: 10.1175/2009JCLI3466.1
    [23]
    Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21(3–4): 221–232. doi: 10.1007/s00382-003-0332-6
    [24]
    Huang Ruixin. 1999. Mixing and energetics of the oceanic thermohaline circulation. Journal of Physical Oceanography, 29(4): 727–746. doi: 10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2
    [25]
    Huang Boyin, Stone P H, Sokolov A P, et al. 2003. The deep-ocean heat uptake in transient climate change. Journal of Climate, 16(9): 1352–1363. doi: 10.1175/1520-0442-16.9.1352
    [26]
    Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 41(6): 2108–2116. doi: 10.1002/2013GL058998
    [27]
    Kuhlbrodt T, Gregory J M. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophysical Research Letters, 39(18): L18608
    [28]
    Levitus S, Antonov J I, Wang Julian, et al. 2001. Anthropogenic warming of Earth’s climate system. Science, 292(5515): 267–270. doi: 10.1126/science.1058154
    [29]
    Lin Pengfei, Liu Hailong, Yu Yongqiang, et al. 2013. Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Advances in Atmospheric Sciences, 30(3): 577–592. doi: 10.1007/s00376-013-2186-0
    [30]
    Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3): 318–329. doi: 10.1007/s13351-012-0305-y
    [31]
    Meehl G A, Washington W M, Arblaster J M, et al. 2004. Factors affecting climate sensitivity in global coupled models. Journal of Climate, 17(7): 1584–1596. doi: 10.1175/1520-0442(2004)017<1584:FACSIG>2.0.CO;2
    [32]
    Meehl G A, Stocker T F, Collins W D, et al. 2007. Global climate projections. In: Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    [33]
    Munk W, Wunsch C. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010. doi: 10.1016/S0967-0637(98)00070-3
    [34]
    Randall D A, Wood R A, Bony S, et al. 2007. Climate models and their evaluation. In: Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 589–662.
    [35]
    Raper S C B, Gregory J M, Stouffer R J. 2002. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. Journal of Climate, 15(1): 124–130. doi: 10.1175/1520-0442(2002)015<0124:TROCSA>2.0.CO;2
    [36]
    Reintges A, Martin T, Latif M, et al. 2017. Uncertainty in twenty-first century projections of the Atlantic Meridional overturning circulation in CMIP3 and CMIP5 models. Climate Dynamics, 49(5–6): 1495–1511. doi: 10.1007/s00382-016-3180-x
    [37]
    Rose B E J, Armour K C, Battisti D S, et al. 2014. The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophysical Research Letters, 41(3): 1071–1078. doi: 10.1002/2013GL058955
    [38]
    Rugenstein M A, Winton M, Stouffer R J, et al. 2013. Northern high-latitude heat budget decomposition and transient warming. Journal of Climate, 26(2): 609–621. doi: 10.1175/JCLI-D-11-00695.1
    [39]
    Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophysical Research Letters, 34(3): L03611
    [40]
    Shen Yang, Guan Yuping. 2015. Feature of thermohaline circulation in two-layer conceptual model based on energy constraint. Science China Earth Sciences, 58(8): 1397–1403. doi: 10.1007/s11430-015-5092-8
    [41]
    Solomon S, Qin D, Manning M, et al. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 235–337
    [42]
    Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498. doi: 10.1175/BAMS-D-11-00094.1
    [43]
    Weaver A J, Sedláček J, Eby M, et al. 2012. Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39(20): L20709
    [44]
    Winton M, Takahashi K, Held M. 2010. Importance of ocean heat uptake efficacy to transient climate change. Journal of Climate, 23(9): 2333–2344. doi: 10.1175/2009JCLI3139.1
    [45]
    Winton M, Adcroft A, Griffies S M, et al. 2013. Influence of ocean and atmosphere components on simulated climate sensitivities. Journal of Climate, 26(1): 231–245. doi: 10.1175/JCLI-D-12-00121.1
    [46]
    Winton M, Anderson W G, Delworth T L, et al. 2014. Has coarse ocean resolution biased simulations of transient climate sensitivity. Geophysical Research Letters, 41(23): 8522–8529. doi: 10.1002/2014GL061523
    [47]
    Yu Yi, Liu Hailong, Lan Jian. 2016. The influence of explicit tidal forcing in a climate ocean circulation model. Acta Oceanologica Sinica, 35(9): 42–50. doi: 10.1007/s13131-016-0931-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (240) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return