LIU Songlin, JIANG Zhijian, ZHOU Chenyuan, WU Yunchao, ARBI Iman, ZHANG Jingping, HUANG Xiaoping, TREVATHAN-TACKETT Stacey M.. Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications[J]. Acta Oceanologica Sinica, 2018, 37(8): 84-90. doi: 10.1007/s13131-018-1233-1
Citation: LIU Songlin, JIANG Zhijian, ZHOU Chenyuan, WU Yunchao, ARBI Iman, ZHANG Jingping, HUANG Xiaoping, TREVATHAN-TACKETT Stacey M.. Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications[J]. Acta Oceanologica Sinica, 2018, 37(8): 84-90. doi: 10.1007/s13131-018-1233-1

Leaching of dissolved organic matter from seagrass leaf litter and its biogeochemical implications

doi: 10.1007/s13131-018-1233-1
  • Received Date: 2017-11-09
  • Rev Recd Date: 2018-02-24
  • Dissolved organic matter (DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM from seagrass leaves contributed to the coastal biogeochemical cycles. To address this gap, we carried out a 30-day laboratory chamber experiment on tropical seagrasses Thalassia hemprichii and Enhalus acoroides. After 30 days of incubation, on average 22% carbon (C), 70% nitrogen (N) and 38% phosphorus (P) of these two species of seagrass leaf litter was released. The average leached dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) of these two species of seagrass leaf litter accounted for 55%, 95% and 65% of the total C, N and P lost, respectively. In the absence of microbes, about 75% of the total amount of DOC, monosaccharides (MCHO), DON and DOP were quickly released via leaching from both seagrass species in the first 9 days. Subsequently, little DOM was released during the remainder of the experiment. The leaching rates of DOC, DON and DOP were approximately 110, 40 and 0.70 μmol/(g·d). Leaching rates of DOM were attributed to the nonstructural carbohydrates and other labile organic matter within the seagrass leaf. Thalassia hemprichii leached more DOC, DOP and MCHO than E. acoroides. In contrast, E. acoroides leached higher concentrations of DON than T. hemprichii, with the overall leachate also having a higher DON:DOP ratio. These results indicate that there is an overall higher amount of DOM leachate from T. hemprichii than that of E. acoroides that is available to the seagrass ecosystem. According to the logarithmic model for DOM release and the in situ leaf litter production (the Xincun Bay, South China Sea), the seagrass leaf litter of these two seagrass species could release approximately 4×103 mol/d DOC, 1.4×103 mol/d DON and 25 mol/d DOP into the seawater. In addition to providing readily available nutrients for the microbial food web, the remaining particulate organic matter (POM) from the litter would also enter microbial remineralization processes. What is not remineralized from either DOM or POM fractions has potential to contribute to the permanent carbon stocks.
  • loading
  • Allen S E. 1989. Chemical Analysis of Ecological Materials. Oxford:Blackwell Scientific Publications
    Aminot A, Kérouel R. 2004. Dissolved organic carbon, nitrogen and phosphorus in the N-E Atlantic and the N-W Mediterranean with particular reference to non-refractory fractions and degradation. Deep Sea Res Part I Oceanogr Res Pap, 51(12):1975-1999
    Apostolaki E T, Marbà N, Holmer M, et al. 2009. Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci, 81(3):390-400
    Barrón C, Duarte C M. 2009. Dissolved organic matter release in a Posidonia oceanica meadow. Mar Ecol Prog Ser, 374:75-84
    Bronk D A, Lomas M W, Glibert P M, et al. 2000. Total dissolved nitrogen analysis:comparisons between the persulfate, UV and high temperature oxidation methods. Mar Chem, 69(1-2):163-178
    Burke M K, Dennison W C, Moore K A. 1996. Non-structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser, 137:195-201
    Cebrian J, Duarte C M. 2001. Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquat Bot, 70(4):295-309
    Cebrián J, Duarte C M, Marbà N, et al. 1996. Herbivory on Posidonia oceanica:magnitude and variability in the Spanish Mediterranean. Mar Ecol Prog Ser, 130:147-155
    Chiu S H, Huang Y H, Lin H J. 2013. Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuar Coast Shelf Sci, 125:27-35
    Collier C J, Lavery P S, Ralph P J, et al. 2009. Shade-induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol, 370(1-2):89-103
    Dawes C, Chan M, Chinn R, et al. 1987. Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmannii from Florida. Aquat Bot, 27(2):195-201
    Duarte C M. 1990. Seagrass nutrient content. Mar Ecol Prog Ser, 67:201-207
    Duarte C M, Chiscano C L. 1999. Seagrass biomass and production:a reassessment. Aquat Bot, 65(1-4):159-174
    Duarte C M, Krause-Jensen D. 2017. Export from seagrass meadows contributes to marine carbon sequestration. Front Mar Sci, 4:13
    Duarte C M, Marbà N, Gacia E, et al. 2010. Seagrass community metabolism:assessing the carbon sink capacity of seagrass meadows. Globa Biogeochem Cycles, 24(4):GB4032
    Duarte C M, Merino M, Agawin N S R, et al. 1998. Root production and belowground seagrass biomass. Mar Ecol Prog Ser, 171:97-108
    Fourqurean J W, Zieman J C, Powell G V N. 1992. Phosphorus limitation of primary production in Florida Bay:evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr, 37(1):162-171
    Godshalk G L, Wetzel R G. 1978. Decomposition of aquatic angiosperms. Ⅲ. Zostera marina L. and a conceptual model of decomposition. Aquat Bot, 5:329-354
    Grasshoff K, Kremling K, Ehrhardt M. 2009. Methods of Seawater Analysis. 3rd ed. New York:John Wiley & Sons
    Harrison P G. 1989. Detrital processing in seagrass systems:a review of factors affecting decay rates, remineralization and detritivory. Aquat Bot, 35(3-4):263-288
    Harrison P G, Mann K H. 1975. Detritus formation from eelgrass (Zostera marina L.):the relative effects of fragmentation, leaching, and decay. Limnol Oceanogr, 20(6):924-934
    Hemminga M A, Duarte C M. 2000. Seagrass Ecology. Cambridge:Cambridge University Press
    Hemminga M A, Marbà N, Stapel J. 1999. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquat Bot, 65(1-4):141-158
    Holmer M, Olsen A B. 2002. Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Mar Ecol Prog Ser, 230:87-101
    Huang Xiaoping, Huang Liangmin, Li Yinghong, et al. 2006. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chin Sci Bull, 51(S2):136-142
    Invers O, Kraemer G P, Pérez M, et al. 2004. Effects of瀠桮楩捴?睯敧瑥汮愠湡摤???楩潯杮攠潯据栠敮浩楴獲瑯牧祥????????????????戠牣??慢瑯敮漠??????剥潳洠敩牮漠???????????癴慥氠畳慥瑡楧湲条?獳攠愼杩爾慐獯獳?汤敯慮晩?氠楯瑣瑥敡牮?摣敡挼漯浩瀾漮猠楊琠楅潸湰?慍湡?攠硂灩敯牬椠浅散湯瑬愬氠″挰漳洨瀱愩爺椹猷漭渱?戴攼瑢睲放敊湩?氦椣琲琳攳爻?扥慺朠?愠湁搬?潂硥祬杴敲湡?甠灒琬愠歔敲?浶敥瑳桥潴搠獁?????硡灬??愲爰??椮漠汁??捬潩污???ひ?????????て??扥牡??慡瑳敳漠???????敩扤牯楮??㈠???湡?????甯湩琾漩渠????敨琭?慡汳???は?????慥牳扴潲湩?晬氠畳硹?楴湥?獳攮愠杅牳慴獵獡?攠捃潯獡祳獴琠敓浨獥???湓??愬爠欱甹洶???圭????佲爾瑋桩?剫?????甬愠牒瑥敩??????攠搱猹??匮攠慁朠牳慴獵獤敹猠??椠潴汨潥朠祲???挠潯汦漠杴票?愠湳摥??潲湡獳敳爠瘼慩琾楐潯湳???潮物摡爠敡捵桳瑴?卡灬物楳渼术敩爾??????????扲牢??礠止汵敤獧瑥慴搠?卦????卥歳??????渠??????祂?????攺猱琷洳愭渱游″匼??????????獐攠湓猬椠瑍楣癍敡?慯湮搠?爬愠灗楥摹?浲敳琠桊漬搠?晴漠牡?愮渠愲氰礱猳椮猠?潥晬?摡楳獥猠潯汦瘠敤摩?浳潯湬潶??愠湯摲?灡潮汩祣猠慣捡捲桢慯牮椠摦敲獯?椠湳?獡敧慲睡慳瑳攠牷???慫爠??桤攠浩??????????????????扲爠?佲杯慰睨慩????呮慮湥潣畴敩????金?き????楣獯獬漠汐癲敯摧?潓牥杲愬渠椴挹?洺愱琲琱攭爱″椳渼?潲挾敌慡湷楬捥?眠慉琠敒爬猠????佯据敥慳渠潌本爠?????????水??????戮爠?估氰椶瘮???????????牲略湤??????噣整牡杮慣牥愠??????敯瑳?慯汰???び?????晰晩敤挬琠獣?潳晴?汥楦杦桥瑣?慩湶摥?扰楲潥浤慩獣獴?灲愠牯瑦椠瑳楥潡湧楲湡杳?漠湮?杴牲潩睥瑮桴??瀠桊漠瑃潨獥祭渠瑅档敯獬椬猠″愲渨搶?挺愱爳戵漳栭礱搳父愵琼敢?挾潌湥瑥攠湋琠?漬映?瑵桮整?獮攠態朠版愮猠猱??椶?娠潐獲瑯敤牵慣?湩潯汮琠楡楮??楣???潯牮渠敲浥?????砠灤??慡牭??楳漠汯??捴潨汥?????????????ごと?扬牡?佳物瑡栠?剥?????潮潵牭攼?? ̄???ㄠ?????即攠慃獨潲湩慳汴?愠湂摡?礬攠慔牥?瑡潳?礠敕慓牁?瘠慍牡楲愠瑅楣潯湬猠?楲湯?琠桓敥?本爠漱眴琳栺′漰昱??椱?娼潢獲琾敌物慵?浓慯牮楧湬慩??椠??????敚敨汩杪物慡獮猬??楨湡?瑧栠敊?汮潧睰敩牮??栠敥獴愠灡敬愮欠攲‰?愶祡???煦畦慥瑣??潯瑦????????????????扭牥?側攠摯畮稠穴楨?倠???敲牣湥搠污?????????????敮挠潯浦瀠潳獥楤瑩業潥湮?愠湯摲?獡楮杩湣椠晣楡捲慢湯据攠?潮映?獲敯慰杩牣慡獬猠?汥敡慧晲?汳楳琠瑢敥牤???楮??票浥漠摓潯捵整慨?湃潨摩潮獡愠??楡???晡潲爠?瑯桬敬?浴椠捂牵潬扬椬愠氱?昰漨漱搩?眲攷戴?椲游‰挼潢慲猾瑌慩汵?睓慯瑮敧牬獩???畊汩晡?潧映?周物楪敩獡瑮攬??湨潯牵琠桃敨牥湮??摡牮椬愠瑥楴挠?卬攮愠????慢爮??捥潭汰?偲牡潬朠?卮敤爠????????????????扮爠?偦椠敤物穳祳湯獬歶楥???????どっ????整瑥桲漠摡獮?漠晩?灳栠潣獯灮桴潲牯畬獬?慮湧愠汦祡獣楴獯?晳漠物?猠潳楥污獧??獳敳搠楢浥敤渠瑥獣??特敳獴楥摭甠慯汦猠??慮湣摵?眠慂瑡敹爬猠??剩慮污敮椠杉桳?乡潮牤琮栠??慩牮潥汳楥渠慊?卵瑲慮瑡敬?啯湦椠癅散牯獬楯瑧祹?戨物?删潃扨敩牮瑥獳潥温??″????椺氲氱猴??′???娼楢敲派慌湯?????????㈠???楌捯牮潥扲楡慧污?猠祎渠瑒栬攠獏椧獄?潮景?摵敥琠牍椠瑊甬猠?汴椠歡敬?瀠愱爹琹椹挮甠汅慦瑦敥獣?晳爠潯浦?摬楩獧獨潴氠癤敥摰?潩牶条慴湩楯据?捯慮爠扴潨湥?牳敵汲敶慩獶敡摬?扡祮?琠牲潥灣楯捶慥汲?猠敯慦朠牴慨獥猠敳獥???慡牳??挼潩氾?偡牬潯杰?卩敬牡????????土???戨牒?卂桲攮瀩瀠慈牯摯???????慰眠汍敡牲???副???慣牯獬栬????㈨?〩???匲攷愼杢牲愾獍獡?慫獥?瀠慐猬琠畃牯敬?晩潥牲?獃攠慊挬漠睌獡?汥慲湹搠獐挠慓瀮攠?氰攰瘷攮氠?摦畦来潣湴杳?桯慦戠楥瑸慰瑥?敩癭慥汮畴慡瑬椠潲湥???獴瑩畯慮爠??漠慬獩瑧?却栠敡汶晡?卬捡楢?????ㄠ????????????扡牳?匠椼敩朾慁汭?坨楩汢汯潬瑩瑳???????慴牨物?????愮礠敍歡????????敲瑯?愠汓??水?????倱爱漷砭椱洲愶琼敢?渾畍瑡物楥攠湎琬?慊湡慦汦礦猣攲猳″漻映?昬漠畍物?獯灳敨捩椠敔猬?潥晴?獡畬戮洠攲爰朰收搮?慑煵畡慮瑴楩捴?癴敩杶敥琠慡瑮楤漠湱?捡潬湩獴畡浴敩摶?戠祡??汥潣牴楳搠慯?洠慤湩慳瑳敯敬???椠?呲牧楡据桩散挠档畡獲?浯慮渠慬瑥畡獣?汥慤琠楦牲潯獭琠牳楥獮??楣???挠潰浬灡慮牴敳搠?瑮漠?牮漠浯慬楩湧敯?汲敯琀琀甀挀攀???椀??愀挀琀甀挀愀?猀愀琀椀瘀愀??椀??瘀愀爀???椀?氀漀渀最椀昀漀氀椀愀??椀??????娀漀漀?圀椀氀搀氀??攀搀????????????? ??戀爀?吀爀攀瘀愀琀栀愀渀?吀愀挀欀攀琀琀?匀?????愀挀爀攀愀搀椀攀?倀????匀愀渀搀攀爀洀愀渀????攀琀?愀氀??? ??????最氀漀戀愀氀?愀猀猀攀猀猀洀攀渀琀?漀昀?琀栀攀?挀栀攀洀椀挀愀氀?爀攀挀愀氀挀椀琀爀愀渀挀攀?漀昀?猀攀愀最爀愀猀猀?琀椀猀猀甀攀猀?椀洀瀀氀椀挀愀琀椀漀渀猀?昀漀爀?氀漀渀最?琀攀爀洀?挀愀爀戀漀渀?猀攀焀甀攀猀琀爀愀琀椀漀渀???爀漀渀琀?倀氀愀渀琀?匀挀椀????????戀爀?嘀??????栀??????琀愀氀漀???嘀??匀??????渀搀攀爀最愀愀爀搀?????  ????愀爀戀漀渀?琀爀愀渀猀昀攀爀?昀爀漀洀?搀攀琀爀椀琀愀氀?氀攀愀瘀攀猀?漀昀?攀攀氀最爀愀猀猀???椀?娀漀猀琀攀爀愀?洀愀爀椀渀愀??椀???琀漀?戀愀挀琀攀爀椀愀???焀甀愀琀??漀琀????????????????戀爀?嘀愀氀搀攀爀爀愀洀愀????????????吀栀攀?猀椀洀甀氀琀愀渀攀漀甀猀?愀渀愀氀礀猀椀猀?漀昀?琀漀琀愀氀?渀椀琀爀漀最攀渀?愀渀搀?琀漀琀愀氀?瀀栀漀猀瀀栀漀爀甀猀?椀渀?渀愀琀甀爀愀氀?眀愀琀攀爀猀???愀爀??栀攀洀??? ????? ??????戀爀?嘀椀挀栀欀漀瘀椀琀琀攀渀?吀???漀氀洀攀爀?????  ????漀渀琀爀椀戀甀琀椀漀渀?漀昀?瀀氀愀渀琀?挀愀爀戀漀栀礀搀爀愀琀攀猀?琀漀?猀攀搀椀洀攀渀琀愀爀礀?挀愀爀戀漀渀?洀椀渀攀爀愀氀椀稀愀琀椀漀渀??伀爀最??攀漀挀栀攀洀????????? ???? ???戀爀?嘀椀稀稀椀渀椀?匀??匀愀爀???????????椀挀栀攀渀攀爀?刀????攀琀?愀氀???  ???吀栀攀?爀漀氀攀?愀渀搀?挀漀渀琀爀椀戀甀琀椀漀渀?漀昀?琀栀攀?猀攀愀最爀愀猀猀??椀?倀漀猀椀搀漀渀椀愀?漀挀攀愀渀椀挀愀??椀????????攀氀椀氀攀?漀爀最愀渀椀挀?洀愀琀琀攀爀?昀漀爀?猀攀挀漀渀搀愀爀礀?挀漀渀猀甀洀攀爀猀?愀猀?爀攀瘀攀愀氀攀搀?戀礀?挀愀爀戀漀渀?愀渀搀?渀椀琀爀漀最攀渀?猀琀愀戀氀攀?椀猀漀琀漀瀀攀?愀渀愀氀礀猀椀猀???挀琀愀?伀攀挀漀氀????????????????戀爀?圀愀渀最?堀甀挀栀攀渀???栀攀渀?刀?????愀戀氀攀??????攀琀?愀氀??? ?????攀愀挀栀椀渀最?愀渀搀?洀椀挀爀漀戀椀愀氀?搀攀最爀愀搀愀琀椀漀渀?漀昀?搀椀猀猀漀氀瘀攀搀?漀爀最愀渀椀挀?洀愀琀琀攀爀?昀爀漀洀?猀愀氀琀?洀愀爀猀栀?瀀氀愀渀琀猀?愀渀搀?猀攀愀最爀愀猀猀攀猀???焀甀愀琀?匀挀椀????????????? ??戀爀?夀愀爀戀爀漀???????愀爀氀猀漀渀??爀?倀?刀???  ????漀洀洀甀渀椀琀礀?漀砀礀最攀渀?愀渀搀?渀甀琀爀椀攀渀琀?昀氀甀砀攀猀?椀渀?猀攀愀最爀愀猀猀?戀攀搀猀?漀昀??氀漀爀椀搀愀??愀礀??唀匀????猀琀甀愀爀??漀愀猀琀猀????????????????戀爀?夀攀洀洀???圀??圀椀氀氀椀猀????????????吀栀攀?攀猀琀椀洀愀琀椀漀渀?漀昀?挀愀爀戀漀栀礀搀爀愀琀攀猀?椀渀?瀀氀愀渀琀?攀砀琀爀愀挀琀猀?戀礀?愀渀琀栀爀漀渀攀???椀漀挀栀攀洀??????????? ??????戀爀?娀椀攀最氀攀爀?匀???攀渀渀攀爀?刀?????????椀猀猀漀氀瘀攀搀?漀爀最愀渀椀挀?挀愀爀戀漀渀?挀礀挀氀椀渀最?椀渀?愀?猀甀戀琀爀漀瀀椀挀愀氀?猀攀愀最爀愀猀猀?搀漀洀椀渀愀琀攀搀?氀愀最漀漀渀???愀爀??挀漀氀?倀爀漀最?匀攀爀???? ??????? ?戀爀?娀椀攀最氀攀爀?匀???愀椀猀攀爀?????攀渀渀攀爀?刀???  ????礀渀愀洀椀挀猀?漀昀?搀椀猀猀漀氀瘀攀搀?漀爀最愀渀椀挀?挀愀爀戀漀渀??渀椀琀爀漀最攀渀?愀渀搀?瀀栀漀猀瀀栀漀爀甀猀?椀渀?愀?猀攀愀最爀愀猀猀?洀攀愀搀漀眀?漀昀??愀最甀渀愀??愀搀爀攀??吀攀砀愀猀???甀氀氀??愀爀?匀挀椀????????????? ?
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (888) PDF downloads(513) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint