MENG Jie, YANG Mei, XU Fei, LI Xinzheng, LI Li. Transcriptome assembly of Modiolus modiolus and comparative analysis with Bathymodiolus platifrons[J]. Acta Oceanologica Sinica, 2018, 37(8): 38-45. doi: 10.1007/s13131-018-1232-2
Citation: MENG Jie, YANG Mei, XU Fei, LI Xinzheng, LI Li. Transcriptome assembly of Modiolus modiolus and comparative analysis with Bathymodiolus platifrons[J]. Acta Oceanologica Sinica, 2018, 37(8): 38-45. doi: 10.1007/s13131-018-1232-2

Transcriptome assembly of Modiolus modiolus and comparative analysis with Bathymodiolus platifrons

doi: 10.1007/s13131-018-1232-2
  • Received Date: 2017-08-18
  • Rev Recd Date: 2018-03-13
  • The genetic basis for bivalves' adaptation and evolution is not well understood. Even few studies have focused on the mechanism of molluscan molecular evolution between the coastal intertidal zone and deep-sea environment. In our studies, we first conducted the transcritpome assembly of Modiolus modiolus mussels living in coastal intertidal zones. Also, we conducted transcriptome comparison analyses between M. modiolus and Bathymodiolus platifrons living in hydrothermal vents and cold methane/sulfide-hydrocarbon seeps. De novo assemblies of the clean reads yielded a total of 182 476 and 156 261 transcripts with N50 values of 1 769 and 1 545 in M. modiolus and B. platifrons. A total of 27 868 and 23 588 unigenes were identified, which also displayed the similar GO representation patterns. Among the 10 245 pairs of putative orthologs, we identified 26 protein-coding genes under strong positive selection (Ka/Ks>1) and 12 genes showing moderate positive selection (0.5<Ka/Ks<1). Most of those genes are predicted to be involved in stress resistance. Overall, our study first provides the transcriptomic database for M. modiolus. Transcriptome comparison illustrates the genome evolution between M. modiolus and B. platifrons, and provides an important foundation for future studies on these two species.
  • loading
  • Barry J P, Buck K R, Kochevar R K, et al. 2002. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebrate Biology, 121(1):47-54
    Bettencourt R, Roch P, Stefanni S, et al. 2007. Deep sea immunity:unveiling immune constituents from the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research, 64(2):108-127
    Canesi L, Gallo G, Gavioli M, et al. 2002. Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microscopy Research and Technique, 57(6):469-476
    Dame R F. 2011. Ecology of Marine Bivalves:An Ecosystem Approach. 2nd ed. Boca Raton:CRC Press
    Dinesen G E, Morton B. 2014. Review of the functional morphology, biology and perturbation impacts on the boreal, habitat-forming horse mussel Modiolus modiolus (Bivalvia:Mytilidae:Modiolinae). Marine Biology Research, 10(9):845-870
    Duperron S, Guezi H, Gaudron S M, et al. 2011. Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology, 9(6):481-91
    Egas C, Pinheiro M, Gomes P, et al. 2012. The Transcriptome of Bathymodiolus azoricus gill reveals expression of genes from endosymbionts and free-living deep-sea bacteria. Marine Drugs, 10(8):1765-1783
    Fujiwara Y, Takai K, Uematsu K, et al. 2000. Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels:influence on host distributions. Marine Ecology Progress Series, 208:147-155
    Grabherr M G, Haas B J, Yassour M, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7):644-652
    Jones W J, Won Y J, Maas P A Y, et al. 2006. Evolution of habitat use by deep-sea mussels. Marine Biology, 148(4):841-851
    Kanehisa M, Araki M, Goto S, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36:D480-D484
    Kavembe G D, Franchini P, Irisarri I, et al. 2015. Genomics of adaptation to multiple concurrent stresses:insights from comparative transcriptomics of a cichlid fish from one of earth's most extreme environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. Journal of Molecular Evolution, 81(3-4):90-109
    Li Bo, Dewey C N. 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12:323
    Li Li, Stoeckert C J Jr, Roos D S. 2003. OrthoMCL:identification of ortholog groups for eukaryotic genomes. Genome Research, 13(19):2178-2189
    Li Qi, Zhao Xuelin, Kong Lingfeng, et al. 2013. Transcriptomic response to stress in marine bivalves. ISJ-Invertebrate Survival Journal, 10(1):84-93
    Mao Xizeng, Cai Tao, Olyarchuk J G, et al. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21(19):3787-3793
    Nakamura-Kusakabe I, Nagasaki T, Kinjo A, et al. 2016. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 191:74-79
    Riesgo A, Andrade S C S, Sharma P P, et al. 2012. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Frontiers in Zoology, 9:33
    Saavedra C, Bachère E. 2006. Bivalve genomics. Aquaculture, 256(1-4):1-14
    Schuster S C. 2008. Next-generation sequencing transforms today's biology. Nature Methods, 5(1):16-18
    Sun Jin, Zhang Yu, Xu Ting, et al. 2017. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nature Ecology & Evolution, 1(5):0121
    Toubiana M, Gerdol M, Rosani U, et al. 2013. Toll-like receptors and MyD88 adaptors in Mytilus:complete cds and gene expression levels. Developmental & Comparative Immunology, 40(2):158-166
    Vitti J J, Grossman S R, Sabeti P C. 2013. Detecting natural selection in genomic Data. Annual Review of Genetics, 47(1):97-120
    Wang Zhong, Gerstein M, Snyder M. 2009. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1):57-63
    Wang Shan, Hou Rui, Bao Zhenmin, et al. 2013. Transcriptome sequencing of Zhikong scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS One, 8(5):e63927
    Wang Hailiang, Sun Li. 2017. Comparative metagenomics reveals insights into the deep-sea adaptation mechanism of the microorganisms in Iheya hydrothermal fields. World Journal of Microbiology Biotechnology, 33:86
    Wang Shi, Zhang Jinbo, Jiao Wenqian, et al. 2017. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nature Ecology & Evolution, 1(5):e0120
    Wong Y H, Sun Jin, He Lisheng, et al. 2015. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Scientific Reports, 5:16597
    Yang Ziheng. 2007. PAML 4:phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8):1586-1591
    Young M D, Wakefield M J, Smyth G K, et al. 2010. Gene ontology analysis for RNA-seq:accounting for selection bias. Genome Biology, 11(2):R14
    Zhang Guofang, Fang Xiaodong, Guo Ximing, et al. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418):49-54
    Zhao Xuelin, Yu Hong, Kong Lingfeng, et al. 2014. Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions. PLoS One, 9(11):e111915
    Zheng Ping, Wang Minxiao, Li Chaolun, et al. 2017. Insights into deep-sea adaptations and host-symbiont interactions:a comparative transcriptome study on Bathymodiolus mussels and their coastal relatives. Molecular Ecology, 26(19):5133-5148
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1180) PDF downloads(753) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint