Citation: | WANG Jintao, CHEN Xinjun, CHEN Yong. Projecting distributions of Argentine shortfin squid (Illex argentinus) in the Southwest Atlantic using a complex integrated model[J]. Acta Oceanologica Sinica, 2018, 37(8): 31-37. doi: 10.1007/s13131-018-1231-3 |
Arkhipkin A. 1993. Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. Fisheries Research, 16(4):313-338
|
Arkhipkin A I. 2000. Intrapopulation structure of winter-spawned Argentine shortfin squid, Illex argentinus (Cephalopoda:Ommastrephidae), during its feeding period over the Patagonian Shelf. Fisheries Bulltine, 98:1-13
|
Basson M, Beddington J R, Crombie J A, et al. 1996. Assessment and management techniques for migratory annual squid stocks:the Illex argentinus fishery in the Southwest Atlantic as an example. Fisheries Research, 28(1):3-27
|
Bazzino G, Quiñones R A, Norbis W. 2005. Environmental associations of shortfin squid Illex argentinus (Cephalopoda:Ommastrephidae) in the Northern Patagonian Shelf. Fisheries Research, 76(3):401-416
|
Brunetti N E, Elena B, Rossi G R, et al. 1998a. Summer distribution, abundance and population structure of Illex argentinus on the Argentine shelf in relation to environmental features. South African Journal of Marine Science, 20(1):175-186
|
Brunetti N E, Ivanovic M L. 1992. Distribution and abundance of early life stages of squid (Illex argentinus) in the south-west Atlantic. ICES Journal of Marine Science, 49(2):175-183
|
Brunetti N E, Ivanovic M L, Rossi G, et al. 1998b. Fishery biology and life history of Illex argentinus. In:Okutani T, ed. Contributed papers to International Symposium on Large Pelagic Squids. Tokyo:Japan Marine Fishery Resources Research Center, 217-231
|
Chang J H, Chen Yong, Holland D, et al. 2010. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Marine Ecology Progress Series, 420:145-156
|
Chen C S, Chiu T S. 2009. Standardising the CPUE for the Illex argentinus fishery in the Southwest Atlantic. Fisheries Science, 75(2):265-272
|
Chen Xinjun, Liu Bilin, Chen Yong. 2008. A review of the development of Chinese distant-water squid jigging fisheries. Fisheries Research, 89(3):211-221
|
Chen Xinjun, Lu Huajie, Liu Bilin, et al. 2012. Forecasting fishing ground of Illex argentinus by using habitat suitability model in the southwest Atlantic. Journal of Shanghai Ocean University (in Chinese), 21(3):431-438
|
Funahashi K I. 1989. On the approximate realization of continuous mappings by neural networks. Neural Networks, 2(3):183-192
|
Gordon A L. 1989. Brazil-malvinas confluence-1984. Deep Sea Research Part A:Oceanographic Research Papers, 36(3):359-384
|
Haimovici M, Brunetti N E, Rodhouse P G, et al. 1998. Illex argentinus. In:Rodhouse P G, Dave E G, O'Dor P K, eds. Squid Recruitment Dynamics. The Genus Illex as a Model. The Commercial Illex species. Influences on Variability, FAO Fisheries Technical Paper 376. Rome:FAO, 27-58
|
Hastie T J, Tibshirani R J. 1990. Generalized additive models. In:Cox D R, Hinkley D V, Rubin D, et al., eds. Monographs on Statistics and Applied Probability. London:Chapman and Hall, 136-173
|
Hatanaka H. 1986. Growth and life span of short-finned spuid Illex argentinus in the waters off argentina. Nippon Suisan Gakkaishi, 52(1):11-17
|
Hatanaka H. 1988. Feeding migration of short-finned squid Illex argentinus in the waters off argentina. Nippon Suisan Gakkaishi, 54(8):1343-1349
|
Ivanovic M L, Brunetti N E. 1994. Food and feeding of Illex argentinus. Antarctic Science, 6(2):185-193
|
Jensen O P, Seppelt R, Miller T J, et al. 2005. Winter distribution of blue crab Callinectes sapidus in Chesapeake Bay:application and cross-validation of a two-stage generalized additive model. Marine Ecology Progress Series, 299:239-255
|
Legeckis R, Gordon A L. 1982. Satellite observations of the Brazil and Falkland currents-1975 1976 and 1978. Deep Sea Research Part A:Oceanographic Research Papers, 29(3):375-401
|
Lek S, Delacoste M, Baran P, et al. 1996. Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90(1):39-52
|
Lu Huajie, Chen Xinjun. 2012. Age, growth and population structure of Illex argentinus based on statolith microstructure in Southwest Atlantic Ocean. Journal of Fisheries of China (in Chinese), 36(7):1049-1056
|
Maunder M N, Punt A E. 2004. Standardizing catch and effort data:a review of recent approaches. Fisheries Research, 70(2-3):141-159
|
Nishikawa H, Igarashi H, Ishikawa Y, et al. 2014. Impact of paralarvae- and juveniles feeding environment on the neon flying squid (Ommastrephes bartramii) winter-spring cohort stock. Fisheries Oceanography, 23(4):289-303
|
Nowlan S J, Hinton G E. 1992. Simplifying neural networks by soft weight-sharing. Neural Computation, 4(4):473-493
|
Olson D B, Podestá G P, Evans R H, et al. 1988. Temporal variations in the separation of Brazil and Malvinas Currents. Deep Sea Research Part A:Oceanographic Research Papers, 35(12):1971-1990
|
Özesmi S L, Özesmi U. 1999. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological Modelling, 116(1):15-31
|
Paruelo J, Tomasel F. 1997. Prediction of functional characteristics of ecosystems:a comparison of artificial neural networks and regression models. Ecological Modelling, 98(2-3):173-186
|
Polito P S, Sato O T, Liu W T. 2000. Characterization and validation of the heat storage variability from TOPEX/Poseidon at four oceanographic sites. Journal of Geophysical Research:Oceans, 105(C7):16911-16921
|
Portela J, Sacau M, Wang J, et al. 2005. Analysis of the variability in the abundance of shortfin squid Illex argentinus in the Southwest Atlantic fisheries during the period 1999-2004. ICES CM 2005/O:16
|
Rodhouse P G, Barton J, Hatifield E M C, et al. 1995. Illex argentinus:life cycle, population structure, and fishery. ICES Marine Science, 199:425-432
|
Sacau M M, Pierce G J, Wang Jianjun, et al. 2005. The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic. Aquatic Living Resources, 18(4):361-372
|
Venables W N, Dichmont C M. 2004. GLMs, GAMs and GLMMs:an overview of theory for applications in fisheries research. Fisheries Research, 70(2-3):319-337
|
Waluda C M, Rodhouse P G, Trathan P N, et al. 2001. Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South Atlantic. Fisheries Oceanography, 10(2):207-216
|
Waluda C M, Trathan P N, Rodhouse P G. 1999. Influence of oceanographic variability on recruitment in the Illex argentinus (Cephalopoda:Ommastrephidae) fishery in the South Atlantic. Marine Ecology Progress Series, 183:159-167
|
Wang Jintao, Chen Xinjun, Chen Yong. 2016. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. International Journal of Remote Sensing, 37(24):6149-6164
|
Wang Jintao, Yu Wei, Chen Xinjun, et al. 2015. Detection of potential fishing zones for neon flying squid based on remote-sensing data in the Northwest Pacific Ocean using an artificial neural network. International Journal of Remote Sensing, 36(13):3317-3330
|
Weigend A S, Huberman B A, Rumelhart D E. 1990. Predicting the future:a connectionist approach. International Journal of Neural Systems, 1(3):193-209
|
Yu Wei, Chen Xinjun, Yi Qian, et al. 2015. Variability of suitable habitat of western winter-spring cohort for neon flying squid in the Northwest Pacific under anomalous environments. PLoS One, 10(4):e0122997
|