Citation: | Zu Yongcan, Sun Shuangwen, Zhao Wei, Li Peiliang, Liu Baochao, Fang Yue, Samah Azizan Abu. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 29-38. doi: 10.1007/s13131-018-1222-4 |
Amores A, Melnichenko O, Maximenko N. 2017a. Coherent mesoscale eddies in the North Atlantic subtropical gyre:3-D structure and transport with application to the salinity maximum. Journal of Geophysical Research:Oceans, 122(1):23-41, doi: 10.1002/jgrc.v122.1
|
Amores A, Monserrat S, Melnichenko O, et al. 2017b. On the shape of sea level anomaly signal on periphery of mesoscale ocean eddies. Geophysical Research Letters, 44(13):6926-6932, doi: 10.1002/2017GL073978
|
Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15):L15606
|
Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216, doi: 10.1016/j.pocean.2011.01.002
|
Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research:Oceans, 116(6):C06018
|
Chen Gengxin, Wang Dongxiao, Dong Changming, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Reports, 5:17416, doi: 10.1038/srep17416
|
Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5:3294, doi: 10.1038/ncomms4294
|
Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2:150028, doi: 10.1038/sdata.2015.28
|
Falkowski P G, Ziemann D, Kolber Z, et al. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature, 352(6330):55-58, doi: 10.1038/352055a0
|
Fang Yue, Fang Guohong, Yu Kejun. 1996. ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters. Chinese Journal of Oceanology and Limnology, 14(4):357-366, doi: 10.1007/BF02850557
|
Fang Guohong, Wang Gang, Fang Yue, et al. 2012. A review on the South China Sea western boundary current. Acta Oceanologica Sinica, 31(5):1-10, doi: 10.1007/s13131-012-0231-y
|
Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research:Oceans, 120(11):7413-7449, doi: 10.1002/2015JC011047
|
Gaube P, McGillicuddy D J Jr, Chelton D B, et al. 2014. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. Journal of Geophysical Research:Oceans, 119(12):8195-8220, doi: 10.1002/2014JC010111
|
Guinehut S, Le Traon P Y, Larnicol G, et al. 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations. Journal of Marine Systems, 46(1-4):85-98
|
Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5):845-857, doi: 10.5194/os-8-845-2012
|
Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research:Oceans, 116(5):C05016
|
Hu Zifeng, Tan Yehui, Song Xingyu, et al. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring inter-monsoon period. Acta Oceanologica Sinica, 33(3):118-128, doi: 10.1007/s13131-014-0431-8
|
Huang Bangqin, Hu Jun, Xu Hongzhou, et al. 2010. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 57(19-20):1792-1798
|
Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual Review of Marine Science, 1:351-375, doi: 10.1146/annurev.marine.010908.163704
|
Mason E, Pascual A, Gaube P, et al. 2017. Subregional characterization of mesoscale eddies across the Brazil-Malvinas confluence. Journal of Geophysical Research:Oceans, 122(4):3329-3357, doi: 10.1002/2016JC012611
|
Mulet S, Rio M H, Mignot A, et al. 2012. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 77-80:70-81
|
Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research:Oceans, 116(C5):C05002
|
Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3):233-241
|
Small R J, De Szoeke, Xie Shangping, et al. 2008. Air-sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3-4):274-319
|
Sun Shuangwen, Fang Yue, Liu Baochao, et al. 2016. Coupling between SST and wind speed over mesoscale eddies in the South China Sea. Ocean Dynamics, 66(11):1467-1474, doi: 10.1007/s10236-016-0993-4
|
Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6):925-935, doi: 10.1007/s10872-008-0076-3
|
Wang Qiang, Zeng Lili, Zhou Weidong, et al. 2015. Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. Journal of Geophysical Research:Oceans, 120(1):517-532, doi: 10.1002/2014JC009814
|
Wyrtki K. 1961. Physical Oceanography of the Southeast Asian Waters. UC San Diego:Scripps Institution of Oceanography, 144-182
|
Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194):322-324, doi: 10.1126/science.1252418
|
Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6:24349, doi: 10.1038/srep24349
|
Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5):519-531, doi: 10.1007/s10236-013-0612-6
|
1. | Bowen Sun, Shuchang Xu, Zhankun Wang, et al. Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region. Acta Oceanologica Sinica, 2024, 43(5): 30. doi:10.1007/s13131-024-2323-x | |
2. | Abhijit Shee, Sourav Sil, Rahul Deogharia. Three-dimensional characteristics of mesoscale eddies in the western boundary current region of the Bay of Bengal using ROMS-NPZD. Dynamics of Atmospheres and Oceans, 2024, 105: 101424. doi:10.1016/j.dynatmoce.2023.101424 | |
3. | Yongcan Zu, Yue Fang, Shuangwen Sun, et al. Seasonal variation of mesoscale eddy intensity in the global ocean. Acta Oceanologica Sinica, 2024, 43(1): 48. doi:10.1007/s13131-023-2278-3 | |
4. | Yingjie Liu, Haoyu Wang, Fei Jiang, et al. Reconstructing 3-D Thermohaline Structures for Mesoscale Eddies Using Satellite Observations and Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1. doi:10.1109/TGRS.2024.3373605 | |
5. | Xinyu Lin, Yun Qiu, Xutao Ni, et al. Three-Dimensional Climatological Structures of the Arabian Sea Eddies and Eddy-Induced Flux. Journal of Ocean University of China, 2023, 22(4): 874. doi:10.1007/s11802-023-5634-1 | |
6. | Xiaohong Yang, Yanming Yang, Jinbao Weng. A Comparative Study of the Temperature Change in a Warm Eddy Using Multisource Data. Remote Sensing, 2023, 15(6): 1650. doi:10.3390/rs15061650 | |
7. | Xiaoyan Dang, Yan Bai, Fang Gong, et al. Different Responses of Phytoplankton to the ENSO in Two Upwelling Systems of the South China Sea. Estuaries and Coasts, 2022, 45(2): 485. doi:10.1007/s12237-021-00987-2 | |
8. | Bowen Sun, Baofu Li, Jingyu Yan, et al. Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent. Acta Oceanologica Sinica, 2022, 41(10): 109. doi:10.1007/s13131-022-2022-4 | |
9. | Yongcan Zu, Yue Fang, Shuangwen Sun, et al. The Seasonality of Mesoscale Eddy Intensity in the Southeastern Tropical Indian Ocean. Frontiers in Marine Science, 2022, 9 doi:10.3389/fmars.2022.855832 | |
10. | Xueming Zhu, Ziqing Zu, Shihe Ren, et al. Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2). Geoscientific Model Development, 2022, 15(3): 995. doi:10.5194/gmd-15-995-2022 | |
11. | Cori Pegliasco, Antoine Delepoulle, Evan Mason, et al. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 2022, 14(3): 1087. doi:10.5194/essd-14-1087-2022 | |
12. | Fangyuan Liu, Hao Zhou, Weimin Huang, et al. Cross-Domain Submesoscale Eddy Detection Neural Network for HF Radar. Remote Sensing, 2021, 13(13): 2441. doi:10.3390/rs13132441 | |
13. | Yang Fu, Zeyu Zheng, Mengchu Zhou, et al. New Results on Joint Classification of Vertical Structure of Ocean Properties at a Global Scale. IEEE Access, 2020, 8: 66448. doi:10.1109/ACCESS.2020.2985527 | |
14. | Venkata Sai Gulakaram, Naresh Krishna Vissa, Prasad Kumar Bhaskaran. Characteristics and vertical structure of oceanic mesoscale eddies in the Bay of Bengal. Dynamics of Atmospheres and Oceans, 2020, 89: 101131. doi:10.1016/j.dynatmoce.2020.101131 | |
15. | Qiang Wang, Weidong Zhou, Lili Zeng, et al. Intraseasonal Variability of Cross-Slope Flow in the Northern South China Sea. Journal of Physical Oceanography, 2020, 50(7): 2071. doi:10.1175/JPO-D-19-0293.1 | |
16. | Xinyu Lin, Yun Qiu, Dezheng Sun. Thermohaline Structures and Heat/Freshwater Transports of Mesoscale Eddies in the Bay of Bengal Observed by Argo and Satellite Data. Remote Sensing, 2019, 11(24): 2989. doi:10.3390/rs11242989 |