WANG Shuai, ZHENG Li, HAN Xiaotian, YANG Baijuan, LI Jingxi, SUN Chengjun. Lipid accumulation and CO2 utilization of two marine oil-rich microalgal strains in response to CO2 aeration[J]. Acta Oceanologica Sinica, 2018, 37(2): 119-126. doi: 10.1007/s13131-018-1171-y
Citation: WANG Shuai, ZHENG Li, HAN Xiaotian, YANG Baijuan, LI Jingxi, SUN Chengjun. Lipid accumulation and CO2 utilization of two marine oil-rich microalgal strains in response to CO2 aeration[J]. Acta Oceanologica Sinica, 2018, 37(2): 119-126. doi: 10.1007/s13131-018-1171-y

Lipid accumulation and CO2 utilization of two marine oil-rich microalgal strains in response to CO2 aeration

doi: 10.1007/s13131-018-1171-y
  • Received Date: 2017-05-04
  • Rev Recd Date: 2011-06-14
  • Biological CO2 sequestration by microalgae is a promising and environmentally friendly technology applied to sequester CO2. The characteristics of neutral lipid accumulation by two marine oil-rich microalgal strains, namely, Isochrysis galbana and Nannochloropsis sp., through CO2 enrichment cultivation were investigated in this study. The optimum culture conditions of the two microalgal strains are 10% CO2 and f medium. The maximum biomass productivity, total lipid content, maximum lipid productivity, carbon content, and CO2 fixation ability of the two microalgal strains were obtained. The corresponding parameters of the two strains were as follows: ((142.42±4.58) g/(m2·d), (149.92±1.80) g/(m2·d)), ((39.95±0.77)%, (37.91±0.58)%), ((84.47±1.56) g/(m2·d), (89.90±1.98) g/(m2·d)), ((45.98±1.75)%, (46.88±2.01)%), and ((33.74±1.65) g/(m2·d), (34.08±1.32) g/(m2·d)). Results indicated that the two marine microalgal strains with high CO2 fixation ability are potential strains for marine biodiesel development coupled with CO2 emission reduction.
  • loading
  • Bai Bing, Li Xiaochun, Liu Yanfeng, et al. 2006. Preliminary study on CO2 industrial point sources and their distribution in China. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 25(S1): 2918-2923
    Bondioli P, Bella L D, Rivolta G, et al. 2012. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource Technology, 114: 567-572
    Chen Wei, Sommerfeld M, Hu Qiang. 2011. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresource Technology, 102(1): 135-141
    Chen Wei, Zhang Chengwu, Song Lirong, et al. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1): 41-47
    Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3): 126-131
    Chiu S Y, Kao C Y, Tsai M T, et al. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2): 833-838
    Fixen P E. 2007. Potential biofuels influence on nutrient use and removal in the U.S. Better Crops, 91(2): 12-14
    Hoshida H, Ohira T, Minematsu A, et al. 2005. Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. Journal of Applied Phycology, 17(1): 29-34
    Hu Hanhua, Gao Kunshan. 2003. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters, 25(5): 421-425
    Hu Hanhua, Gao Kunshan. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters, 28(13): 987-992
    Huang Xuxiong, Huang Zhengzheng, Wen Wen, et al. 2013. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, 25(1): 129-137
    Huerlimann R, de Nys R, Heimann K. 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnology and Bioengineering, 107(2): 245-257
    Kumar A, Ergas S, Yuan Xin, et al. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7): 371-380
    Lee Y K, Tay H S. 1991. High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture. Journal of Applied Phycology, 3(2): 95-101
    Li Tao, Wan Linglin, Li Aifen, et al. 2013. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations. Chinese Journal of Oceanology and Limnology, 31(6): 1306-1314
    Liu Juanni, Hu Ping, Yao Ling, et al. 2006. Advance of photobioreactor on microalgal cultivation. Food Science (in Chinese), 27(12): 772-777
    Liu Jin, Sommerfeld M, Hu Qiang. 2013. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Applied Microbiology and Biotechnology, 97(11): 4785-4798
    Liu Zhiyuan, Wang Guangce. 2014. Effect of Fe3+ on the growth and lipid content of Isochrysis galbana. Chinese Journal of Oceanology and Limnology, 32(1): 47-53
    Ma Zengling, Li Wei, Gao Kunshan. 2012. Impacts of solar UV radiation on grazing, lipids oxidation and survival of Acartia pacifica Steuer (Copepod). Acta Oceanologica Sinica, 31(5): 126-134
    Mata T M, Martins A A, Caetano N S. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1): 217-232
    Moazami N, Ashori A, Ranjbar R, et al. 2012. Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass and Bioenergy, 39: 449-453
    Moheimani N R, Borowitzka M A. 2007. Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnology and Bioengineering, 96(1): 27-36
    Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6): 635-648
    Ramanan R, Kannan K, Deshkar A, et al. 2010. Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology, 101(8): 2616-2622
    Salih F M. 2011. Microalgae tolerance to high concentrations of carbon dioxide: a review. Journal of Environmental Protection, 2(5): 648-654
    Shi Juan, Pan Kehou. 2004. Effects of different culture conditions and growth phases on lipid of microalgae. Marine Fisheries Research (in Chinese), 25(6): 79-85
    Sun Yingying, Sun Liqin, Wang Changhai. 2005. Effect of micro-elements on growth of Isochrysis galbana. Journal of Yantai University (Natural Science and Engineering Edition) (in Chinese), 18(4): 281-286
    Tang Dahai, Han Wei, Li Penglin, et al. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3): 3071-3076
    Wang Xuekui, Wang Yunsheng, Sun Zhinan, et al. 2006. Effects of NaSO3 concentration on growth and fatty acids composition of Isochrysis galbana. Biotechnology (in Chinese), 16(1): 61-63
    Wang Jinna, Yan Xiaojun, Zhou Chengxu, et al. 2010. Screening of oil-producing microalgae and detecting dynamics of neutral lipid accumulation. Acta Biophysica Sinica (in Chinese), 26(6): 472-480
    Wang Shuai, Zheng Li, Han Xiaotian, et al. 2014. Effect on lipid accumulation of marine oil-rich microalgae under different temperature and CO2 enrichment cultivation. Haiyang Xuebao (in Chinese), 36(12): 41-52
    Wei Likun, Huang Xuxiong, Huang Zhengzheng. 2015. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chinese Journal of Oceanology and Limnology, 33(1): 99-106
    Wei Dong, Zhang Xuecheng, Sui Zhenghong, et al. 2000a. Effects of nitrogen sources and N/P ration on cell growth, total lipid content and fatty acid composition of Nannochloropsis oculata. Marine Science (in Chinese), 24(7): 46-50
    Wei Dong, Zhang Xuecheng, Zou Lihong, et al. 2000b. Effect of cell growth phase on total lipid content and fatty acid composition of two marine microalgae. Journal of Ocean University of Qingdao (in Chinese), 30(3): 503-509
    Xu Jin, Xu Xudong, Fang Xiantao, et al. 2012. Screening and lipid analyses of high oleaginous Chlorella species. Acta Hydrobiologica Sinica (in Chinese), 36(3): 426-432
    Xu Shaokun, Zhang Feng, Xiang Wenzhou, et al. 2011. Progress in the study of removal from coal fired flue gas by microalgae. Advance in Earth Sciences (in Chinese), 26(9): 944-953
    Yang Zhonghua, Yang Gai, Li Fangfang, et al. 2011. Recent progress in fixation of CO2 with microalgae for carbon emission reduction. Chinese Journal of Bioprocess Engineering (in Chinese), 9(1): 66-75
    Yang Baijuan, Zheng Li, Han Xiaotian, et al. 2013. Development of TLC-FID technique for rapid screening of the chemical composition of microalgae diesel and biodiesel blends. Fuel, 111: 344-349
    Yu Rongqing, Liu Yi, Tian Siqi, et al. 2011. Isolation and identification of oil microalgae and optimization of its culture conditions. Chinese Journal of Applied and Environmental Biology (in Chinese), 17(6): 897-900
    Zhao Bingtao, Zhang Yixin, Xiong Kaibin, et al. 2011. Effect of cultivation mode on microalgal growth and CO2 fixation. Chemical Engineering Research and Design, 89(9): 1758-1762
    Zhu Shunni, Wang Zhongming, Shang Chuanghua, et al. 2011. Lipid biosynthesis and metabolic regulation in microalgae. Progress in Chemistry (in Chinese), 23(10): 2169-2176
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (791) PDF downloads(627) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint