WEI Jun, LIU Xin, JIANG Guoqing. Parameterizing sea surface temperature cooling induced by tropical cyclones using a multivariate linear regression model[J]. Acta Oceanologica Sinica, 2018, 37(1): 1-10. doi: 10.1007/s13131-018-1153-0
Citation: WEI Jun, LIU Xin, JIANG Guoqing. Parameterizing sea surface temperature cooling induced by tropical cyclones using a multivariate linear regression model[J]. Acta Oceanologica Sinica, 2018, 37(1): 1-10. doi: 10.1007/s13131-018-1153-0

Parameterizing sea surface temperature cooling induced by tropical cyclones using a multivariate linear regression model

doi: 10.1007/s13131-018-1153-0
  • Received Date: 2017-01-23
  • Combining a linear regression and a temperature budget formula, a multivariate regression model is proposed to parameterize and estimate sea surface temperature (SST) cooling induced by tropical cyclones (TCs). Three major dynamic and thermodynamic processes governing the TC-induced SST cooling (SSTC), vertical mixing, upwelling and heat flux, are parameterized empirically using a combination of multiple atmospheric and oceanic variables: sea surface height (SSH), wind speed, wind curl, TC translation speed and surface net heat flux. The regression model fits reasonably well with 10-year statistical observations/reanalysis data obtained from 100 selected TCs in the northwestern Pacific during 2001-2010, with an averaged fitting error of 0.07 and a mean absolute error of 0.72℃ between diagnostic and observed SST cooling. The results reveal that the vertical mixing is overall the pre dominant process producing ocean SST cooling, accounting for 55% of the total cooling. The upwelling accounts for 18% of the total cooling and its maximum occurs near the TC center, associated with TC-induced Ekman pumping. The surface heat flux accounts for 26% of the total cooling, and its contribution increases towards the tropics and the continental shelf. The ocean thermal structures, represented by the SSH in the regression model, plays an important role in modulating the SST cooling pattern. The concept of the regression model can be applicable in TC weather prediction models to improve SST parameterization schemes.
  • loading
  • Bender M A, Ginis I. 2000. Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Wea Rev, 128(4): 917-946
    Braun S A. 2002. A cloud-resolving simulation of Hurricane Bob (1991): storm structure and eyewall buoyancy. Mon Wea Rev, 130(6): 1573-1592
    Chelton D B. 2005. The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J Climate, 18(4): 530-550
    Chen Hua, Zhang Dalin, Carton J, et al. 2011. On the rapid intensification of Hurricane Wilma (2005): Part I. Model prediction and structural changes. Wea Forecasting, 26(6): 885-901
    Cione J J, Uhlhorn E W. 2003. Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Wea Rev, 131(8): 1783-1796
    Ginis I. 2002. Tropical cyclone-ocean interactions. Atmosphere-Ocean Interactions, Advances in Fluid Mechanics Series, No. 33. Boston: WIT Press, 83-144)
    Huang Peisheng, Sanford T B, Imberger J. 2009. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J Geophys Res, 114(C12): C12023, doi: 10.1029/2009JC005603
    Jacob, S. D., Shay, L. K. 2003. The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study. Journal of physical oceanography, 33(4): 649-676
    Jacob S D, Shay L K, Mariano A J, et al. 2000. The 3D oceanic mixed layer response to Hurricane Gilbert. J Phys Oceanogr, 30(6): 1407-1429
    Jaimes B, Shay L K. 2009. Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon Wea Rev, 137(12): 4188-4207
    Jullien S, Menkes C E, Marchesiello P, et al. 2012. Impact of tropical cyclones on the heat budget of the south pacific ocean. J Phys Oceanogr, 42(11): 1882-1906,, doi:10.1175/jpo-d-11-0133.1
    Lin I I, Wu C C, Emanuel K A, et al. 2005. The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon Wea Rev, 133(9): 2635-2649,, doi:10.1175/MWR3005.1
    Lin I I, Wu C C, Pun I F, et al. 2008. Upper-ocean thermal structure and the western north Pacific category 5 typhoons: Part I. Ocean features and the category 5 typhoons' intensification. Mon Wea Rev, 136(9): 3288-3306,, doi:10.1175/2008MWR2277.1
    Lin Yanluan, Zhao Ming, Zhang Minghua. 2015. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat Commun, 6: 6591, doi:10.1038/ncomms7591
    Liu Xin, Wei Jun. 2015. Understanding surface and subsurface temperature changes induced by tropical cyclones in the Kuroshio. Ocean Dyn, 65(7): 1017-1027
    Price J F. 1981. Upper ocean response to a hurricane. J Phys Oceanogr, 11(2): 153-175
    Price J F. 2009. Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?.. Ocean Sci, 5(3): 351-368
    Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. J Phys Oceanogr, 24(2): 233-260
    Sakaida F, Kawamura H, Toba Y. 1998. Sea surface cooling caused by typhoons in the Tohoku area in August 1989. J Geophys Res, 103(C1): 1053-1065
    Shay L K, Black P G, Mariano A J, et al. 1992. Upper ocean response to Hurricane Gilbert. J Geophys Res, 97(C12): 20227-20248
    Shay L K, Goni G J, Black P G. 2000. Effects of a warm oceanic feature on Hurricane Opal. Mon Wea Rev, 128(5): 1366-1383
    Sun Jingru, Oey L Y, Chang R, et al. 2015. Ocean response to Typhoon Nuri (2008) in western Pacific and South China Sea. Ocean Dyn, 65(5): 735-749,, doi:10.1007/s10236-015-0823-0
    Tsai Y, Chern C S, Wang J. 2008. Typhoon induced upper ocean cooling off northeastern Taiwan. Geophys Res Lett, 35(14): L14605
    Uhlhorn E W, Shay L K. 2013. Loop current mixed layer energy response to Hurricane Lili (2002): Part Ⅱ. idealized numerical simulations. J Phys Oceanogr, 43(6): 1173-1192
    Vincent E M, Lengaigne M, Madec G, et al. 2012. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J Geophys Res, 117(C2): C02020, doi:10.1029/2011JC007396
    Wei Jun, Liu Xin, Wang Dongxiao. 2014. Dynamic and thermal responses of the Kuroshio to typhoon Megi (2004). Geophys Res Lett, 41(23): 8495-8502,, doi:10.1002/2014GL061706
    Wu C R, Chang Y L, Oey L Y, et al. 2008. Air-sea interaction between tropical cyclone Nari and Kuroshio. Geophys Res Lett, 35(12), doi:10.1029/2008GL033942
    Zhu Tong, Zhang Dalin. 2006. The impact of the storm-induced SST cooling on hurricane intensity. Adv Atmos Sci, 23(1): 14-22
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1189) PDF downloads(663) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint