LIU Yang, LIN Wenshi, LI Jiangnan, WANG Gang, YANG Song, FENG Yerong. A numerical simulation of latent heating within Typhoon Molave[J]. Acta Oceanologica Sinica, 2017, 36(7): 39-47. doi: 10.1007/s13131-017-1082-3
Citation: LIU Yang, LIN Wenshi, LI Jiangnan, WANG Gang, YANG Song, FENG Yerong. A numerical simulation of latent heating within Typhoon Molave[J]. Acta Oceanologica Sinica, 2017, 36(7): 39-47. doi: 10.1007/s13131-017-1082-3

A numerical simulation of latent heating within Typhoon Molave

doi: 10.1007/s13131-017-1082-3
  • Received Date: 2016-12-13
  • Rev Recd Date: 2017-01-17
  • The weather research and forecasting (WRF) model is a new generation mesoscale numerical model with a fine grid resolution (2 km), making it ideal to simulate the macro- and micro-physical processes and latent heating within Typhoon Molave (2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater, sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.
  • loading
  • Adler R F, Rodgers E B. 1977. Satellite-observed latent heat release in a tropical cyclone. Mon Wea Rev, 105(8): 956-963
    Benjamin S O, Seaman N L. 1985. A simple scheme for objective analysis in curved flow. Mon Wea Rev, 113(7): 1184-1198
    Betts A K. 1986. A new convective adjustment scheme: Part I. Observational and theoretical basis. Quart J Roy Meteor Soc, 112(473): 677-691
    Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 46(20): 3077-3107
    Emanuel K A. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665-669
    Gray W M. 1981. Recent advances in tropical cyclone research from rawindsonde composite analysis. World Meteorological Organization Programme on Research in Tropical Meteorology. Geneva, Switzerland: WMO, 407
    Hogsett W, Zhang D L. 2009. Numerical simulation of hurricane bonnie (1998): Part Ⅲ. Energetics. J Atmos Sci, 66(9): 2678-2696
    Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc, 42(2): 129-151
    Hong S Y, Lim K S S, Kim J H, et al. 2009. Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: ice-phase microphysics versus sedimentation effects. J Appl Meteor Climatol, 48(1): 61-76
    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev, 134(9): 2318-2341
    Houze R A Jr. 1997. Stratiform precipitation in regions of convection: A meteorological paradox. Bull Amer Meteor Soc, 78(10): 2179-2196
    Janjić Z I. 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev, 122(5): 927-945
    Johnson R H. 1984. Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: implications for cumulus parameterization. Mon Wea Rev, 112(8): 1590-1601
    Kummerow C, Hong Y, Olson W S, et al. 2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteor, 40(11): 1801-1820
    Fong S K, Wu C S, Hao I P, et al. 2001. Numerical prediction experiment on Typhoon Maggie (9903). Acta Oceanol Sinica, 20(2): 171-181
    Lin W S, Xu S S, Sui C H. 2011. A numerical simulation of the effect of the number concentration of cloud droplets on Typhoon Chanchu. Meteor Atmos Phys, 113: 99-108
    Low-Nam S, Davis C. 2001. Development of a tropical cyclone bogussing scheme for the MM5 system. In: Proceedings of the 11th PSU/NCAR Mesoscale Model User's Workshop. Colorado: Boulder, 130–134
    Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 102(D14): 16663-16682, doi: 10.1029/97JD00237
    Molinari J, Dudek M. 1992. Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Wea Rev, 120(2): 326-344
    Olson W S, Kummerow C D, Hong Y, et al. 1999. Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J Appl Meteor, 38(6): 633-664
    Pattnaik S, Krishnamurti T N. 2007. Impact of cloud microphysical processes on hurricane intensity: Part 2. Sensitivity experiments. Meteor Atmos Phys, 97(1–4): 127-147
    Riehl H, Malkus J S. 1958. On the heat balance in the equatorial trough zone. Geophysica, 6: 503-538
    Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the Advanced Research WRF version 2. NCAR Technical Note NCAR/TN-468+STR, 88
    Sui C H, Lau K M, Tao W K, et al. 1994. The tropical water and energy cycles in a cumulus ensemble model: Part I. Equilibrium climate. J Atmos Sci, 51(5): 711-728
    Tao W K, Lang S, Simpson J, et al. 1993. Retrieval algorithms for estimating the vertical profiles of latent heat release: their applications for TRMM. J Meteor Soc Japan, 71(6): 685-700
    Tao W K, Smith E A, Adler R F, et al. 2006. Retrieval of latent heating from TRMM measurements. Bull Amer Meteor Soc, 87(11): 1555-1572
    Wang L, Lau K H, Zhang Q H, et al. 2008. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophys Res Lett, 35(10): L10802, doi: 10.1029/2008GL033446
    Wu C C, Cheng H J, Wang Y Q, et al. 2009. A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon Wea Rev, 137(1): 21-40
    Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 30(4): 611-627
    Yang S, Smith E A. 1999. Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J Atmos Oceanic Technol, 16(6): 633-655
    Zhang D L, Kieu C Q. 2006. Potential vorticity diagnosis of a simulated hurricane: Part Ⅱ. Quasi-balanced contributions to forced secondary circulations. J Atmos Sci, 63(11): 2898-2914
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (772) PDF downloads(747) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint