DING Ling, ZHAO Meixun, YU Meng, LI Li, HUANG Chi-Yue. Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1
Citation: DING Ling, ZHAO Meixun, YU Meng, LI Li, HUANG Chi-Yue. Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1

Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea

doi: 10.1007/s13131-017-1068-1
  • Received Date: 2016-04-13
  • Multi-biomarker indexes were analyzed for two piston cores from potential cold seep areas of the South China Sea off southwestern Taiwan. Total organic carbon (TOC) normalized terrestrial (n-alkanes) and marine (brassicasterol, dinosterol, alkenones and iso-GDGTs) biomarker contents and ratios (TMBR, 1/Pmar-aq, BIT) were used to evaluate the contributions of terrestrial and marine organic matter (TOM and MOM respectively) to the sedimentary organic matter, indicating that MOM dominated the organic sources in Core MD052911 and the sedimentary organic matter in Core ORI-860-22 was mainly derived from terrestrial inputs, and different morphologies were the likely reason for TOM percentage differences. BIT results suggested that river-transported terrestrial soil organic matter was not a major source of TOM of sedimentary organic matter around these settings. Diagnostic biomarkers for methane-oxidizing archaea (MOA) were only detected in one sample at 172 cm depth of Core ORI-860-22, with abnormally high iso-GDGTs content and Methane Index (MI) value (0.94). These results indicated high anaerobic oxidation of methane (AOM) activities at or around 172 cm in Core ORI-860-22. However in Core MD052911, MOA biomarkers were not detected and MI values were lower (0.19-0.38), indicated insignificant contributions of iso-GDGTs from methanotrophic archaea and the absence of significant AOM activities. Biomarker results thus indicated that the discontinuous upward methane seepage and insufficient methane flux could not induce high AOM activities in our sampling sites. In addition, the different patterns of TEX86 and U37K' temperature in two cores suggested that AOM activities affected TEX86 temperature estimates with lower values in Core ORI-860-22, but not significantly on TEX86 temperature estimates in Core MD052911.
  • loading
  • Aquilina A, Knab N J, Knittel K, et al. 2010. Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes. Org Geochem, 41(4):414-426
    Bian Liangqiao, Hinrichs K U, Xie Tianmin, et al. 2001. Algal and archaeal polyisoprenoids in a recent marine sediment:molecular isotopic evidence for anaerobic oxidation of methane. Geochem Geophys Geosyst, 2(1), doi: 10.1029/2000GC000112
    Biddle J F, Lipp J S, Lever M A, et al. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci U S A, 103(10):3846-3851
    Blumenberg M, Seifert R, Reitner J, et al. 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A, 101(30):11111-11116
    Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804):623-626
    Boon J J, Rijpstra W I C, de Lange F, et al. 1979. Black sea sterol-a molecular fossil for dinoflagellate blooms. Nature, 277(5692):125-127
    Bouloubassi I, Aloisi G, Pancost R D, et al. 2006. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Org Geochem, 37(4):484-500
    Chen Zhong, Huang C Y, Zhao Meixun, et al. 2011. Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea. J Asian Earth Sci, 40(1):363-370
    Chi W C, Reed D L, Liu C S, et al. 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terrestr Atmos Ocean Sci, 9(4):779-794
    Chuang P C, Yang T F, Lin S, et al. 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terrestr Atmos Ocean Sci, 17(4):903-920
    Dadson S J, Hovius N, Chen H, et al. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967):648-651
    Elvert M, Hopmans E C, Treude T, et al. 2005. Spatial variations of methanotrophic consortia at cold methane seeps:implications from a high-resolution molecular and isotopic approach. Geobiology, 3(3):195-209
    Elvert M, Suess E, Whiticar M J. 1999. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften, 86(6):295-300
    Guan Hongxiang, Sun Yongge, Zhu Xiaowei, et al. 2013. Factors controlling the types of microbial consortia in cold-seep environments:a molecular and isotopic investigation of authigenic carbonates from the South China Sea. Chem Geol, 354:55-64
    Hinrichs K U, Summons R E, Orphan V, et al. 2000. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem, 31(12):1685-1701
    Hoehler T M, Alperin M J, Albert D B, et al. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment:evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles, 8(4):451-463
    Hopmans E C, Schouten S, Pancost R D, et al. 2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom, 14(7):585-589
    Hopmans E C, Weijers J W H, Schefuß E, et al. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1-2):107-116
    Huang C Y, Chien C W, Zhao Meixun, et al. 2006a. Geological investigations of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan. Terrestr Atmos Ocean Sci, 17(4):679-702
    Huang C Y, Yuan P B, Tsao S J. 2006b. Temporal and spatial records of active arc-continent collision in Taiwan:a synthesis. Geological Society of America Bulletin, 118(3-4):274-288
    Kaneko M, Naraoka H, Takano Y, et al. 2013. Distribution and isotopic signatures of archaeal lipid biomarkers associated with gas hydrate occurrences on the northern Cascadia Margin. Chem Geol, 343:76-84
    Kim J H, Schouten S, Hopmans E C, et al. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geoch Cosmochim Acta, 72(4):1154-1173
    Lee D H, Kim J H, Bahk J J, et al. 2013. Geochemical signature related to lipid biomarkers of ANMEs in gas hydrate-bearing sediments in the Ulleung Basin, East Sea (Korea). Mar Pet Geol, 47:125-135
    Lin S, Hsieh W C, Lim Y C, et al. 2006. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terrestr Atmos Ocean Sci, 17(4):883-902
    Liu C S, Deffontaines B, Lu C Y, et al. 2004. Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Mar Geophys Res, 25(1-2):123-137
    Liu C S, Schnürle P, Wang Y S, et al. 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestr Atmos Ocean Sci, 17(4):615-644
    Marlowe I T, Brassell S C, Eglinton G, et al. 1984. Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem, 6:135-141
    Müller P J, Kirst G, Ruhland G, et al. 1998. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim Cosmochim Acta, 62(10):1757-1772
    Orphan V J, Hinrichs K U, Ussler W Ⅲ, et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 67(4):1922-1934
    Pancost R D, Damste J S S. 2003. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol, 195(1-4):29-58
    Pancost R D, Hopmans E C, Damsté J S S. 2001. Archaeal lipids in Mediterranean cold seeps:molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta, 65(10):1611-1627
    Pape T, Blumenberg M, Seifert R, et al. 2005. Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeogr Palaeoclimatol Palaeoecol, 227(1-3):31-47
    Parkes R J, Cragg B A, Banning N, et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol, 9(5):1146-1161
    Reeburgh W S, Ward B B, Whalen S C, et al. 1991. Black Sea methane geochemistry. Deep Sea Res Part A:Oceanogr Res Papers, 38(S2):S1189-S1210
    Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107(2):486-513
    Schouten S, Hopmans E C, Schefuß E, et al. 2002. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?. Earth Planet Sci Lett, 204(1-2):265-274
    Schouten S, Hopmans E C, Sinninghe Damsté J S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review. Org Geochem, 54:19-61
    Sikes E L, Uhle M E, Nodder S D, et al. 2009. Sources of organic matter in a coastal marine environment:evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Mar Chem, 113(3-4):149-163
    Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. 2002a. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Appl Environ Microbiol, 68(6):2997-3002
    Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. 2002b. Crenarchaeol:the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res, 43(10):1641-1651
    Smith R W, Bianchi T S, Li Xinxin. 2012. A re-evaluation of the use of branched GDGTs as terrestrial biomarkers:implications for the BIT Index. Geochim Cosmochim Acta, 80:14-29
    Stadnitskaia A, Bouloubassi I, Elvert M, et al. 2008. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats. Org Geochem, 39(8):1007-1014
    Versteegh G J M, Zonneveld K A F. 2002. Use of selective degradation to separate preservation from productivity. Geology, 30(7):615-618
    Volkman J K, Barrett S M, Blackburn S I, et al. 1998. Microalgal biomarkers:a review of recent research developments. Org Geochem, 29(5-7):1163-1179
    Wegener G, Boetius A. 2009. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes. Biogeosciences, 6(5):867-876
    Wei Yuli, Wang Peng, Zhao Meixun, et al. 2014. Lipid and DNA evidence of dominance of planktonic archaea preserved in sediments of the South China Sea:insight for application of the TEX86 proxy in an unstable marine sediment environment. Geomicrobiol J, 31(4):360-369
    Weijers J W H, Lim K L H, Aquilina A, et al. 2011. Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux. Geochem Geophys Geosyst, 12(10):Q10010
    Weijers J W H, Schouten S, Schefuß E, et al. 2009. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments:a multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochim Cosmochim Acta, 73(1):119-132
    Weijers J W H, Schouten S, Spaargaren O C, et al. 2006. Occurrence and distribution of tetraether membrane lipids in soils:implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37(12):1680-1693
    Xing Lei, Zhang Hailong, Yuan Zineng, et al. 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Cont Shelf Res, 31(10):1106-1115
    Xing Lei, Zhao Meixun, Gao Wenxian, et al. 2014. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea. Org Geochem, 76:72-81
    Yu Xiaoguo, Han Xiqiu, Li Hongliang, et al. 2008. Biomarkers and carbon isotope composition of anaerobic oxidation of methane in sediments and carbonates of northeastern part of Dongsha, South China Sea. Haiyang Xuebao (in Chinese), 30(3):77-84
    Zhang C L, Li Yiliang, Wall J D, et al. 2002. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 30(3):239-242
    Zhang Yige, Zhang Chuanlun, Liu Xiaolei, et al. 2011. Methane Index:a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett, 307(3-4):525-534
    Zhao Meixun, Dupont L, Eglinton G, et al. 2003. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org Geochemis, 34(1):131-143
    Zhu Chun, Weijers J W H, Wagner T, et al. 2011. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin. Org Geochem, 42(4):376-386
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2111) PDF downloads(1071) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint