ZHANG Shugang, BIAN Lingen, ZHAO Jinping, LI Min, CHEN Shizhe, JIAO Yutian, CHEN Ping. Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean[J]. Acta Oceanologica Sinica, 2017, 36(8): 84-93. doi: 10.1007/s13131-017-1019-x
Citation: ZHANG Shugang, BIAN Lingen, ZHAO Jinping, LI Min, CHEN Shizhe, JIAO Yutian, CHEN Ping. Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean[J]. Acta Oceanologica Sinica, 2017, 36(8): 84-93. doi: 10.1007/s13131-017-1019-x

Thermodynamic model of melt pond and its application during summer of 2010 in the central Arctic Ocean

doi: 10.1007/s13131-017-1019-x
  • Received Date: 2016-02-19
  • A one-dimensional thermodynamic model of melt pond is established in this paper. The observation data measured in the summer of 2010 by the Chinese National Arctic Research Expedition (CHINARE-2010) are used to partially parameterize equations and to validate results of the model. About 85% of the incident solar radiation passed through the melt pond surface, and some of it was released in the form of sensible and latent heat. However, the released energy was very little (about 15%), compared to the incident solar radiation. More than 58.6% of the incident energy was absorbed by melt pond water, which caused pond-covered ice melting and variation of pond water temperature. The simulated temperature of melt pond had a diurnal variation and its value ranged between 0.0℃ and 0.3℃. The melting rate of upper pond-covered ice is estimated to be around two times faster than snow-covered ice. At same time, the change of melting rate was relatively quick for pond depth less than 0.4 m, while the melting rate kept relatively constant (about 1.0 cm/d) for pond depth greater than 0.4 m.
  • loading
  • Bian Lingen, Ma Yongfeng, Lu Changgui. 2011. Experiment of turbulent flux near surface layer and its parameterizations on a drift ice over the Arctic Ocean. Haiyang Xuebao (in Chinese), 33(2):27-35
    Bitz C M, Lipscomb W H. 1999. An energy-conserving thermodynamic model of sea ice. J Geophys Res, 104(C7):15669-15677
    Bogorodskiy P V, Marchenko A V. 2014. Thermodynamic effects accompanying freezing of two water layers separated by a sea ice sheet. Oceanology, 54(2):152-159
    Bolsenga S J. 1978. Photosynthetically active radiation transmittance through ice. NOAA Technical Memorandum ERL GLERL-18. Ann Arbor, Michigan:Great Lakes Environmental Research Laboratory, US Department of Commerce
    Cox G F N, Weeks W F. 1974. Salinity variations in sea ice. J Glaciol, 13(67):109-120
    Ebert E E, Curry J A. 1993. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J Geophys Res, 98(C6):10085-10109
    Eicken H, Gradinger R, Ivanov B, et al. 1996. Surface melt puddles on multi-year sea ice in the Eurasian Arctic. In:Proceedings of ACSYS Conference on the Dynamics of the Arctic Climate System World Climate Research Programme. Göteborg, Sweden:WMO/TD, 267-271
    Fetterer F, Untersteiner N. 1998. Observations of melt ponds on Arctic sea ice. J Geophys Res, 103(C11):24821-24835
    Flocco D, Feltham D L, Turner A K. 2010. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J Geophys Res, 115(C8):C08012, doi: 10.1029/2009JC005568
    Flocco D, Schroeder D, Feltham D L, et al. 2012. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J Geophys Res, 117(C9):C09032, doi: 10.1029/2012JC008195
    Flocco D, Feltham D L, Bailey E, et al. 2015. The refreezing of melt ponds on Arctic sea ice. J Geophys Res, 120(2):647-659,, doi: 10.1002/2014JC010140
    Grenfell T C, Maykut G A. 1977. The optical properties of ice and snow in the Arctic Basin. J Glaciol, 18(80):445-463
    Heron R, Woo M K. 1994. Decay of a high Arctic lake-ice cover:observations and modelling. J Glaciol, 40(135):283-292
    Landy J, Ehn J, Shields M, et al. 2014. Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago. J Geophys Res, 119(5):3054-3075
    Lei Ruibo, Zhang Zhanhai, Matero I, et al. 2012. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Res, 31(1):17325, doi: 10.3402/polar.v31i0.17325
    Louis J F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteor, 17(2):187-202
    Lüthje M, Feltham D L, Taylor P D, et al. 2006. Modeling the summertime evolution of sea-ice melt ponds. J Geophys Res, 111(C2):C02001, doi: 10.1029/2004JC002818
    Maykut G A, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. J Geophys Res, 76:1550-1575
    Mellor G L, Kantha L. 1989. An ice-ocean coupled model. J Geophys Res, 94(C8):10937-10954
    Notz D. 2005. Thermodynamic and fluid-dynamical processes in sea ice[dissertation]. Cambridge:University of Cambridge
    Pegau W S. 2002. Inherent optical properties of the central Arctic surface waters. J Geophys Res, 107(C10):8035, doi: 10.1029/2000JC000382
    Perovich D K. 1990. Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers. J Geophys Res, 95(C6):9557-9567
    Perovich D K, Grenfell T C, Light B, et al. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res, 107(C10):8044, doi: 10.1029/2000JC00438
    Podgorny I A, Grenfell T C. 1996. Partitioning of solar energy in melt ponds from measurements of pond albedo and depth. J Geophys Res, 101(C10):22737-22748,, doi: 10.1029/96JC02123
    Rogers R R, Yau M K. 1989. A Short Course in Cloud Physics. 3rd ed. New York:Pergamon Press
    Sandven S, Johannesen O M. 2006. Sea ice monitoring by remote sensing. In:Gower J F R, ed. Manual of Remote Sensing:Remote Sensing of the Marine Environment. 3rd ed. Bethesda:American Society for Photogrammetry & Remote Sensing
    Schröder D, Feltham D L, Flocco D, et al. 2014. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat Climate Change, 4(5):353-357,, doi: 10.1038/nclimate2203
    Semtner A J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr, 6(3):379-389
    Skyllingstad E D, Paulson C A, Perovich D K. 2009. Simulation of melt pond evolution on level ice. J Geophys Res, 114(C12):C12019, doi: 10.1029/2009JC005363
    Taylor P D. 2004. Mathematical modelling the formation and evolution of melt ponds on sea ice[dissertation]. London, UK:University of London
    Taylor P D, Feltham D L. 2004. A model of melt pond evolution on sea ice. J Geophys Res, 109(C12):C12007, doi: 10.1029/2004JC002361
    Untersteiner N. 1961. On the mass and heat budget of Arctic sea ice. Arch Meteor Geophys Bioklimatol Ser A, 12(2):151-182
    Weeks W F, Ackley S F. 1986. The growth, structure, and properties of sea ice. In:Untersteiner N, ed. The Geophysics of Sea Ice. New York, US:Springer, 9-164
    Xie H, Lei R, Ke C, et al. 2013. Summer sea ice characteristics and morphology in the pacific Arctic sector as observed during the CHINARE 2010 cruise. Cryosphere, 7(4):1057-1072
    Yu Y, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. J Geophys Res, 101(C11):25753-25766
    Zhang Shugang, Zhao Jinping, Shi Jiuxin, et al. 2014. Surface heat budget and solar radiation allocation at a melt pond during summer in the central Arctic Ocean. J Ocean Univ China, 13(1):45-50
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1411) PDF downloads(976) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return