Citation: | XU Xinwanghao, FU Guanghe, ZOU Xinqing, GE Chendong, ZHAO Yifei. Diurnal variations of carbon dioxide, methane, and nitrous oxide fluxes from invasive Spartina alterniflora dominated coastal wetland in northern Jiangsu Province[J]. Acta Oceanologica Sinica, 2017, 36(4): 105-113. doi: 10.1007/s13131-017-1015-1 |
Allen D E, Dalal R C, Rennenberg H, et al. 2007. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology and Biochemistry, 39(2):622-631
|
Allen D, Dalal R C, Rennenberg H, et al. 2011. Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia. Plant Biology, 13(1):126-133
|
Chanton J P, Whiting G J, Blair N E, et al. 1997. Methane emission from rice:stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochemical Cycle, 11(1):15-27
|
Chen Huai, Wu Ning, Yao Shouping, et al. 2010. Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai-Tibetan Plateau. Environmental Monitoring and Assessment, 164(1-4):21-28
|
Chen Jinhai, Wang Lei, Li Yanli, et al. 2012. Effect of Spartina alterniflora invasion and its controlling technologies on soil microbial respiration of a tidal wetland in Chongming Dongtan, China. Ecological Engineering, 41:52-59
|
Cheng Xiaoli, Luo Yiqi, Chen Jiquan, et al. 2006. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biology and Biochemistry, 38(12):3380-3386
|
Cheng Xiaoli, Luo Yiqi, Xu Qing, et al. 2010. Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant and Soil, 327(1-2):85-94
|
Cheng Xiaoli, Peng Ronghao, Chen Jiquan, et al. 2007. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere, 68(3):420-427
|
Davidson E A. 1993. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In:Oremland R S, ed. Biogeochemistry of Global Change. New York:Springer US, 369-386
|
Davidson E A, Verchot L V, Cattânio J H, et al. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48(1):53-69
|
Ding Weixin, Cai Zucong. 2007. Methane emission from natural wetlands in China:summary of years 1995-2004 studies. Pedosphere, 17(4):475-486
|
Dong Yunshe, Qi Yuchun, Luo Ji, et al. 2003. Experimental study on N2O and CH4 fluxes from the dark coniferous forest zone soil of the Gongga Mountain, China. Science in China Series D:Earth Sciences, 46(3):285-295
|
Duan Xiaonan, Wang Xiaoke, Mu Yujing, et al. 2005. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment, 39(25):4479-4487
|
Emery H E, Fulweiler R W. 2014. Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquatic Botany, 116:83-92
|
Hirota M, Senga Y, Seike Y, et al. 2007. Fluxes of carbon dioxide, Methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 68(3):597-603
|
IPCC. 2013. Climate Change 2013:The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, New York, NY, USA:Cambridge University Press
|
Joabsson A, Christensen T R, Wallén B. 1999. Vascular plant controls on Methane emissions from northern peat forming wetlands. Trends in Ecology & Evolution, 14(10):385-388
|
Liao Chengzhang, Luo Yiqi, Jiang Lifen, et al. 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10(8):1351-1361
|
Liu Jin'e, Zhou Hongxia, Qin Pei, et al. 2007. Effects of Spartina alterniflora salt marshes on organic carbon acquisition in intertidal zones of Jiangsu Province, China. Ecological Engineering, 30(3):240-249
|
Liu Shuwei, Zhang Yaojun, Lin Feng, et al. 2014. Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant and Soil, 374(1-2):285-297
|
Livingston G P, Hutchinson G L. 1995. Enclosure-based measurement of trace gas exchange:applications and sources of error. In:Matson P A, Harriss R C, eds. Biogenic Trace Gases:Measuring Emissions from Soil and Water. Cambridge:Blackwell Science, 14-51
|
Maljanen M, Martikainen P J, Aaltonen H, et al. 2002. Short-term variation in fluxes of carbon dioxide, nitrous oxide and methane in cultivated and forested organic boreal soils. Soil Biological and Biochemistry, 34(5):577-584
|
Mikkelä C, Sundh I, Svensson B H, et al. 1995. Diurnal variation in METHANE emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry, 28(2):93-114
|
Miyata A, Leuning R, Denmead O T, et al. 2000. Carbon dioxide and METHANE fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology, 102(4):287-303
|
Morin T H, Bohrer G, Naor-Azrieli L, et al. 2014. The seasonal and diurnal dynamics of methane flux at a created urban wetland. Ecological Engineering, 72:74-83
|
Morris J T, Whiting G J. 1986. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses. Estuaries, 9(1):9-19
|
Nakano T, Kuniyoshi S, Fukuda M. 2000. Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmospheric Environment, 34(8):1205-1213
|
Nieveen J P, Jacobs C M J, Jacobs A F G. 1998. Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bog. Global Change Biology, 4(8):823-833
|
Parkin T B, Kaspar T C. 2003. Temperature controls on diurnal carbon dioxide flux. Soil Science Society of America Journal, 67(6):1763-1772
|
Pei Zhiyong, Ouyang Hua, Zhou Caiping, et al. 2003. Fluxes of CO2, CH4 and N2O from alpine grassland in the Tibetan Plateau. Journal of Geographical Sciences, 13(1):27-34
|
Qin Pei, Zhong Chongxin. 1992. Applied Studies on Spartina (in Chinese). Beijing:China Ocean Press, 67-71
|
Smith K A, Ball T, Conen F, et al. 2003. Exchange of greenhouse gases between soil and atmosphere:interactions of soil physical factors and biological processes. European Journal of Soil Science, 54(4):779-791
|
Sun Zhigao, Jiang Huanhuan, Wang Lingling, et al. 2013. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and Soil, 369(1-2):317-333
|
Tong Chuan, Huang Jiafang, Hu Zhiqiang, et al. 2013. Diurnal variations of carbon dioxide, methane, and nitrous oxide vertical fluxes in a subtropical estuarine marsh on neap and spring tide days. Estuaries and Coasts, 36(3):633-642
|
Tong Chuan, Wang Weiqi, Huang Jiafang, et al. 2012. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland. Biogeochemistry, 111(1-3):677-693
|
Van der Nat F J, Middelburg J J. 2000. Methane emission from tidal freshwater marshes. Biogeochemistry, 49(2):103-121
|
Wang Yuesi, Xue Min, Zheng Xunhua, et al. 2005. Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 58(2):205-215
|
Xu Xinwanghao, Zou Xinqing, Cao Liguo, et al. 2014. Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China. Ecological Engineering, 73:469-477
|
Yu Zhongjie, Li Yangjie, Deng Huanguang, et al. 2012. Effect of Scirpus mariqueter on nitrous oxide emissions from a subtropical monsoon estuarine wetland. Journal of Geophysical Research:Biogeosciences, 117(G2):G02017
|
Yuan Junji, Ding Weixin, Liu Deyan, et al. 2014. Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Applied Microbiology and Biotechnology, 98(4):1817-1829
|
Zhang Yaohong, Ding Weixin. 2011. Diel methane emissions in stands of Spartina alterniflora and Suaeda salsa from a coastal salt marsh. Aquatic Botany, 95(4):262-267
|
Zhang Yaohong, Ding Weixin, Cai Zucong, et al. 2010. Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmospheric Environment, 44(36):4588-4594
|
Zhang L H, Song L P, Zhang L W, et al. 2015. Diurnal dynamics of CH4, CO2 and N2O fluxes in the saline-alkaline soils of the Yellow River Delta, China. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 149(4):797-805
|
Zhang Yaohong, Wang Lin, Xie Xiaojin, et al. 2013. Effects of invasion of Spartina alterniflora and exogenous N deposition on N2O emissions in a coastal salt marsh. Ecological Engineering, 58:77-83
|
Zhou Changfang, Qin Pei, Xie Min. 2003. Vegetating coastal areas of east China:species selection, seedling cloning and transplantation. Ecological Engineering, 20(4):275-286
|
Zhu Renbin, Liu Yashu, Ma Jing, et al. 2008. Nitrous oxide flux to the atmosphere from two coastal tundra wetlands in eastern Antarctica. Atmospheric Environment, 42(10):2437-2447
|