ZHANG Yunfeng, ZHANG Zhenke, HE Huachun, CHEN Yingying, JIANG Songliu, REN Hang. Processes of small-scale tidal flat accretion and salt marsh changes on the plain coast of Jiangsu Province, China[J]. Acta Oceanologica Sinica, 2017, 36(4): 80-86. doi: 10.1007/s13131-017-0971-9
Citation: ZHANG Yunfeng, ZHANG Zhenke, HE Huachun, CHEN Yingying, JIANG Songliu, REN Hang. Processes of small-scale tidal flat accretion and salt marsh changes on the plain coast of Jiangsu Province, China[J]. Acta Oceanologica Sinica, 2017, 36(4): 80-86. doi: 10.1007/s13131-017-0971-9

Processes of small-scale tidal flat accretion and salt marsh changes on the plain coast of Jiangsu Province, China

doi: 10.1007/s13131-017-0971-9
  • Received Date: 2015-12-20
  • Rev Recd Date: 2016-06-30
  • Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes, which causes the degradation of the coastal ecosystem and the biodiversity function. In this study, we explored the changes of tidal flat and salt marsh coverage in a small-scale tidal flat with an area of~160 000 m2 in the plain coast of Jiangsu Province, China. Human activities (e.g., the construction of dikes) are a crucial contributor that benefits for the tidal flat accretions and the following changes of salt marsh coverage. Located in the front of the man-made "concave coastline", the study area is suitable for sediment accretion after the dike construction in the end of 2006. On the basis of the annual tidal surface elevation survey from 2007 to 2012, the sedimentation rates in the human influenced tidal flat varied from a few centimeters per year to 23 cm/a. The study area experienced a rapid accretion in the tidal flat and the expansion of the salt marsh, with the formation of a longshore bar, and a subsequent decline of the salt marsh. Breaking waves during the flooding tide brought much sediment from the adjacent tidal flat to the study area, which caused burial and degeneration of the salt marsh. The vertical grain size changes within a 66 cm long core in the study area also demonstrated the above changes in the tidal environment. This study indicates that the responses of small-scale tidal flat changes to reclamation are significant, and the rational reclamation would benefit for the new salt marsh formation in front of the dikes. Further research about the evolution of small scale tidal flat as well as the spatial planning of the polder dike should be strengthened for the purpose to maintain a healthier coastal environment.
  • loading
  • Allen J R L. 1989. Evolution of salt-marsh cliffs in muddy and sandy systems:a qualitative comparison of British west:coast estuaries. Earth Surface Processes and Landforms, 14(1):85-92
    Allen J R L. 2000. Morphodynamics of Holocene salt marshes:a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19(12):1155-1231
    Anthony E J, Levoy F, Monfort D, et al. 2005. Short-term intertidal bar mobility on a ridge-and-runnel beach, Merlimont, Northern France. Earth Surface Processes and Landforms, 30(1):81-93
    Belfiore S. 2003. The growth of integrated coastal management and the role of indicators in integrated coastal management:introduction to the special issue. Ocean & Coastal Management, 46(3-4):225-234
    Chen Yining, Gao Shu, Jia Jianjun, et al. 2005. Tidalflat ecological changes by transplanting Spartina anglica and Spartina alterniflora, northern Jiangsu coast. Oceanologia et Limnologia Sinica (in Chinese), 36(5):394-403
    Chen Zhongxin, Zhang Xinshi. 2000. Value of ecosystem services in China. Chinese Science Bulletin, 45(10):870-876
    Cox R, Wadsworth R A, Thomson A G. 2003. Long-term changes in salt marsh extent affected by channel deepening in a modified estuary. Continental Shelf Research, 23(17-19):1833-1846
    Darby F A, Turner R E. 2008. Below- and aboveground biomass of Spartina alterniflora:response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts, 31(2):326-334
    Davis H G, Taylor C M, Civille J C, et al. 2004. An Allee effect at the front of a plant invasion:Spartina in a Pacific estuary. Journal of Ecology, 92(2):321-327
    Gallagher J L, Wolf P L, Pfeiffer W J. 1984. Rhizome and root growth rates and cycles in protein and Carbohydrate Concentrations in Georgia Spartina alterniflora Loisel, plants. American Journal of Botany, 71(2):165-169
    Gao S, Collins M B. 1997. Formation of salt-marsh cliffs in an accretional environment, Christchurch Harbour, southern England. In:Wang P X, Bergran W, eds. Proceedings of the 30th International Geological Congress. Amsterdam:VSP Press, 95-110
    Goodwin P, Mehta A J, Zedler J B. 2001. Tidal wetland restoration:an introduction. Journal of Coastal Research, 27(S1):1-6
    He Xiaoyan, Hu Ting, Wang Yaping, et al. 2010. Seasonal distributions of hydrometeor parameters in the offshore sea of Jiangsu. Marine Sciences (in Chinese), 34(9):44-54
    Jennerjahn T C, Mitchell S B. 2013. Pressures, stresses, shocks and trends in estuarine ecosystems-an introduction and synthesis. Estuarine, Coastal and Shelf Science, 130:1-8
    Leonard L A, Crof A L. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science, 69(3-4):325-336
    Li Hua, Yang Shilun. 2007. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands. Advances in Earth Science (in Chinese), 22(6):583-591
    Li Bochang, Yu Wenchou, Chen Peng, et al. 2011. Variation characteristics of sediment transport and salinity in north branch channel of Yangtze River estuary in recent years. Water Resources Protection (in Chinese), 27(4):31-34
    Martín A, Anquela A B, Dimas-Pagés A, et al. 2015. Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring. Measurement, 69:95-108
    Masselink G, Kroon A, Davidson-Arnott R G D. 2006. Morphodynamics of intertidal bars in wave-dominated coastal settings-a review. Geomorphology, 73(1-2):33-49
    McManus J. 1988. Grain size determination and interpretation. In:Tuker M, ed. Techniques in Sedimentology. Oxford:Blackwell, 63-85
    Möller I, Spencer T, French J R, et al. 2001. The sea-defence value of salt marshes:field evidence from north Norfolk. Water and Environment Journal, 15(2):109-116
    Pedersen J B T, Bartholdy J. 2007. Exposed salt marsh morphodynamics:an example from the Danish Wadden Sea. Geomorphology, 90(1-2):115-125
    Plyler D B, Carrick K M. 1993. Site-specific seed dormancy in Spartina alterniflora (Poaceae). American Journal of Botany, 80(7):752-756
    Qiu J. 2011. China faces up to ‘terrible’ state of its ecosystems. Nature, 471(7336):19
    Quartel S, Kroon A, Ruessink B G. 2008. Seasonal accretion and erosion patterns of a microtidal sandy beach. Marine Geology, 250(1-2):19-33
    Ren Lijuan, Wang Guoxiang, Qiu Le, et al. 2010. Morphology and biomass distribution of Spartina alterniflora growing in different tidal flat habitats in Jiangsu. Journal of Ecology and Rural Environment (in Chinese), 26(3):220-226
    Ren Mei'e, Zhang Renshun, Yang Juhai, et al. 1985. The influence of storm tide on mud plain coast with special reference to Jiangsu Province. Journal of Coastal Research, 1(1):21-28
    Turner R K, Subak S, Adger W N. 1996. Pressures, trends, and impacts in coastal zones:interactions between socioeconomic and natural systems. Environmental Management, 20(2):159-173
    van der Wal D, Pye K. 2004. Patterns, rates and possible causes of salt marsh erosion in the Greater Thames area (UK). Geomorphology, 61(3-4):373-391
    van Proosdij D, Ollerhead J, Davidson-Arnott R G D. 2006. Seasonal and annual variations in the volumetric sediment balance of a macro-tidal salt marsh. Marine Geology, 225(1-4):103-127
    Wang Ying. 1983. The mudflat system of China. Canadian Journal of Fish and Aquaculture Sciences, 40(S1):s160-s171
    Wang Qing. 2011. Spartaina alterniflora invasion Chongming Dongtan, Shanghai:history, status, and prediction. Resources and Environment in the Yangtze Basin (in Chinese), 20(6):690-696
    Wang Aijun, Gao Shu, Jia Jianjun. 2006. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China. Haiyang Xuebao (in Chinese), 28(1):92-99
    Wolanski E, De'ath G. 2005. Predicting the impact of present and future human land-use on the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 64(2-3):504-508
    Wright L D, Short A D. 1984. Morphodynamic variability of surf zones and beaches:a synthesis. Marine Geology, 56(1-4):93-118
    Xie Li, Zhang Zhenke, Zhang Yunfeng, et al. 2013. Sedimentation and morphological changes at Yuantuojiao Point, estuary of the North Branch, Changjiang River. Acta Oceanologica Sinica, 32(2):24-34
    Yang Shilun. 1999. Sedimentation on a growing intertidal island in the Yangtze River mouth. Estuarine, Coastal and Shelf Science, 49(3):401-410
    Yang Shilun. 2003. An Introduction to the Coastal Environment and Geomorphologic Processes (in Chinese). Beijing:China Ocean Press, 85, 146
    Yang Shilun, Ding Pingxing, Chen Shenliang. 2001. Changes in progradation rate of the tidal flats at the mouth of the Changjiang (Yangtze) River, China. Geomorphology, 38(1-2):167-180
    Yang Shilun, Friedrichs C T, Shi Zhong, et al. 2003. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm. Estuaries, 26(6):1416-1425
    Yuan Xionglei, Zhang Jianguo. 2003. Some thoughts of exploring tidal lands in Qidong. Ocean Development and Management (in Chinese), (3):69-73
    Zhang Weiguo, Ma Honglai, Ye Leiping, et al. 2012. Magnetic and geochemical evidence of Yellow and Yangtze River influence on tidal flat deposits in northern Jiangsu Plain, China. Marine Geology, 319-322:47-56
    Zhu Dong, Gao Shu. 2014. The expansion of Spartina alterniflora marsh in response to tidal flat reclamation, central Jiangsu coast, eastern China. Geographical Research (in Chinese), 33(12):2382-2392
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1247) PDF downloads(1084) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return